Publications by authors named "Paul W S Heng"

Compaction of sustained release coated pellets into multi-unit pellet system (MUPS) tablets has been associated with damage to the functional polymer layer, leading to a loss in desired sustained release function. Many filler materials and complex processes have been studied on their ability to mitigate compaction-induced pellet coat damage. Among these, native or unprocessed starches included in the filler material have not been explored well despite being a simple strategy.

View Article and Find Full Text PDF

Magnesium stearate (MgSt) is a common tablet lubricant. As variations in MgSt properties are known to influence tablet attributes, the impact of MgSt fatty acid composition, particularly the significance of the stearate and palmitate contents, and its effects on tablet properties warrant further investigation. This study investigated the effect of MgSt with different stearate and palmitate contents but comparable physical properties (e.

View Article and Find Full Text PDF

Background/objectives: Hydroxypropyl methylcellulose (HPMC) is one of the most commonly used hydrophilic polymers in formulations of matrix tablets for controlled release applications. However, HPMC attracts moisture and poses issues with drug stability in formulations containing moisture-sensitive drugs.

Methods: Herein, the moisture sorption behavior of excipients and drug stability using aspirin as the model drug in matrix tablets were evaluated, using HPMC and the newly developed mannitol-coated HPMC, under accelerated stability conditions (40 °C, 75% relative humidity) with open and closed dishes.

View Article and Find Full Text PDF

Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder.

View Article and Find Full Text PDF

One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30.

View Article and Find Full Text PDF

Excipients are ubiquitous in pharmaceutical products, and often, they can also play a critical role in maintaining product quality. For a product containing a moisture-sensitive drug, moisture can be deleterious to the product stability during storage. Therefore, using excipients that interact with moisture in situ can potentially alleviate product stability issues.

View Article and Find Full Text PDF

The influences of the punch face design on multi-unit pellet system (MUPS) tablets were investigated. Drug-loaded pellets coated with sustained release polymer based on ethylcellulose or acrylic were compacted into MUPS tablets. Punch face designs used include standard concave, deep concave, flat-faced bevel edge and flat-faced radius edge.

View Article and Find Full Text PDF

Minitablets are prepared using multiple die openings and multi-tip punches for greater productivity. With multiple tips on the punch barrel, the overall compaction force to be applied is commonly estimated by multiplying the desired compaction force per tip by the number of punch tips. Few researchers have however examined this proportionality and the effects of the number of punch tips and punch face geometry on the critical quality attributes (CQAs) of high drug load minitablets.

View Article and Find Full Text PDF

The disintegration of tablets plays a crucial role in facilitating drug release, and disintegrants are used in tablet formulations to promote the disintegration process. This study aimed to explore and understand the impact of salt incorporation on tablet disintegratability. The study was designed to modulate the microenvironment temperature of tablets through dissolution of salts incorporated in the formulation, with the aim to facilitate tablet disintegration.

View Article and Find Full Text PDF

One novel chromanone acid derivative, namely inocalophylline C (), together with one known compound calophyllolide (), were isolated from the methanolic extract of nut oil resin of L., a medicinal plant widely distributed in Vietnam. The isolated compound structures were elucidated by spectroscopic methods and the absolute configuration of was established by the single-crystal X-ray crystallography as ethyl () 3-(()-4-hydroxy-2,3-dimethyl-6-(()-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl)-6-(3-methylbut-2-en-1-yl)-5,7-dioxo-3,5,6,7-tetrahydro-2-chromen-8-yl)-3-phenylpropanoate.

View Article and Find Full Text PDF

Multi-unit pellet system (MUPS) is of great interest as it is amenable to customization. MUPS comprises multi-particulates, usually as pellets or spheroids, which can be coated with diffusion barrier coatings. One commonly used diffusion barrier coating is the methacrylic acid copolymer, which can be used as a taste masking, enteric or sustained release polymer.

View Article and Find Full Text PDF

The maximal amount of drug contained in a minitablet is limited. To reduce the total number of minitablets in a single dose, high drug load minitablets can be prepared from high drug load feed powders by various pharmaceutical processing techniques. Few researchers have however examined the influence of pharmaceutical processing techniques on the properties of high drug load feed powders, and consequently the manufacturability of high drug load minitablets.

View Article and Find Full Text PDF

Surface roughness of carrier particles can impact dry powder inhaler (DPI) performance. There are opposing views on the effect of roughness on DPI performance. Hence, a systematic approach is needed to modify carrier surfaces and evaluate the impact on drug delivery.

View Article and Find Full Text PDF

Multi-unit pellet system (MUPS) tablets were fabricated by compacting drug-loaded pellets of either crospovidone or microcrystalline cellulose core. These pellets were produced by extrusion-spheronization and coated with ethylcellulose (EC) for a sustained drug release function. Coat damage due to the MUPS tableting process could undermine the sustained release function of the EC-coated pellets.

View Article and Find Full Text PDF

Tablet disintegration is an important pre-requisite for drug dissolution and absorption. The disintegration test is typically conducted at 37 °C, but the intragastric temperature may vary due to meals or fever. This study investigated the effects of temperature and compaction pressure on tablet disintegratability to gain deeper insights into superdisintegrant sensitivity and function.

View Article and Find Full Text PDF

Introduction: As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations.

View Article and Find Full Text PDF

The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol.

View Article and Find Full Text PDF

This study was designed to evaluate paraffin wax as a potential controlled release matrix for spray congealing and its impact on drug release and stability of the microparticles. Paraffin wax can form a hydrophobic barrier to moisture and reduce drug degradation besides retarding drug release in the gastrointestinal tract. More hydrophilic lipid-based additives can be incorporated to modulate the drug release through the paraffin wax barrier.

View Article and Find Full Text PDF

Micronized drug powders are generally unsuitable as tableting feed to produce minitablets due to their cohesivity and poor flow. The silicification of fine paracetamol powder (PCM) with an optimal concentration range of fumed silica (fSi) [0.7-0.

View Article and Find Full Text PDF

The stability of pharmaceuticals is an important product quality attribute. Of the known factors affecting stability, moisture is often perceived as the most common cause of drug degradation by hydrolysis or other reactions facilitated by moisture as a medium. Excipients are a critical entity in formulations to enable drug delivery as well as efficient manufacture of pharmaceutical dosage forms.

View Article and Find Full Text PDF

The two main components of starch - amylose and amylopectin, are responsible for its interaction with moisture. This study investigated how moisture sorption properties of the starches with different amylose-amylopectin ratio impacted tablet properties including drug stability. The starch samples were equilibrated to 33, 53, and 75% relative humidity (RH) and then assessed for tabletability, compactibility, and yield pressure.

View Article and Find Full Text PDF

A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms.

View Article and Find Full Text PDF

Background: Direct compression is potentially sensitive to particle size distribution (PSD) variability in pharmaceutical grade excipients. Yet, the impact is insufficiently studied. Furthermore, the use of force sensor as a process analytical technology (PAT) platform, to monitor the effect of PSD variations on compact tensile strength, is a readily available but underutilized strategy.

View Article and Find Full Text PDF