Publications by authors named "Paul W Fieguth"

Optimal performance is desired for decision-making in any field with binary classifiers and diagnostic tests, however common performance measures lack depth in information. The area under the receiver operating characteristic curve (AUC) and the area under the precision recall curve are too general because they evaluate all decision thresholds including unrealistic ones. Conversely, accuracy, sensitivity, specificity, positive predictive value and the F1 score are too specific-they are measured at a single threshold that is optimal for some instances, but not others, which is not equitable.

View Article and Find Full Text PDF

Background: In classification and diagnostic testing, the receiver-operator characteristic (ROC) plot and the area under the ROC curve (AUC) describe how an adjustable threshold causes changes in two types of error: false positives and false negatives. Only part of the ROC curve and AUC are informative however when they are used with imbalanced data. Hence, alternatives to the AUC have been proposed, such as the partial AUC and the area under the precision-recall curve.

View Article and Find Full Text PDF

Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP).

View Article and Find Full Text PDF

In classification with Support Vector Machines, only Mercer kernels, i.e. valid kernels, such as the Gaussian RBF kernel, are widely accepted and thus suitable for clinical data.

View Article and Find Full Text PDF

In this paper, we propose a simple, efficient, yet robust multiresolution approach to texture classification-binary rotation invariant and noise tolerant (BRINT). The proposed approach is very fast to build, very compact while remaining robust to illumination variations, rotation changes, and noise. We develop a novel and simple strategy to compute a local binary descriptor based on the conventional local binary pattern (LBP) approach, preserving the advantageous characteristics of uniform LBP.

View Article and Find Full Text PDF

There is significant interest in the synthesis of discrete-state random fields, particularly those possessing structure over a wide range of scales. However, given a model on some finest, pixellated scale, it is computationally very difficult to synthesize both large- and small-scale structures, motivating research into hierarchical methods. In this paper, we propose a frozen-state approach to hierarchical modeling, in which simulated annealing is performed on each scale, constrained by the state estimates at the parent scale.

View Article and Find Full Text PDF
Texture classification from random features.

IEEE Trans Pattern Anal Mach Intell

March 2012

Inspired by theories of sparse representation and compressed sensing, this paper presents a simple, novel, yet very powerful approach for texture classification based on random projection, suitable for large texture database applications. At the feature extraction stage, a small set of random features is extracted from local image patches. The random features are embedded into a bag-of-words model to perform texture classification; thus, learning and classification are carried out in a compressed domain.

View Article and Find Full Text PDF

The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours.

View Article and Find Full Text PDF

The fields of bioinformatics and biotechnology rely on the collection, processing and analysis of huge numbers of biocellular images, including cell features such as cell size, shape, and motility. Thus, cell tracking is of crucial importance in the study of cell behaviour and in drug and disease research. Such a multitarget tracking is essentially an assignment problem, NP-hard, with the solution normally found in practice in a reduced hypothesis space.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncsegbc1n2ptqpdq8ofg5jvejs7igqc35): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once