Human admixture history is rarely a simple process in which distinct populations, previously isolated for a long time, come into contact once to form an admixed population. In this study, we aim to reconstruct the complex admixture histories of the population of São Tomé, an island in the Gulf of Guinea that was the site of the first slave-based plantation economy, and experienced successive waves of forced and deliberate migration from Africa. We examined 2.
View Article and Find Full Text PDFThe Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region.
View Article and Find Full Text PDFAdmixture is a fundamental evolutionary process that has influenced genetic patterns in numerous species. Maximum-likelihood approaches based on allele frequencies and linkage-disequilibrium have been extensively used to infer admixture processes from genome-wide data sets, mostly in human populations. Nevertheless, complex admixture histories, beyond one or two pulses of admixture, remain methodologically challenging to reconstruct.
View Article and Find Full Text PDFDuring the Trans-Atlantic Slave Trade (TAST), around twelve million Africans were enslaved and forcibly moved from Africa to the Americas and Europe, durably influencing the genetic and cultural landscape of a large part of humanity since the 15th century. Following historians, archaeologists, and anthropologists, population geneticists have, since the 1950's mainly, extensively investigated the genetic diversity of populations on both sides of the Atlantic. These studies shed new lights into the largely unknown genetic origins of numerous enslaved-African descendant communities in the Americas, by inferring their genetic relationships with extant African, European, and Native American populations.
View Article and Find Full Text PDFAfrican rainforests support exceptionally high biodiversity and host the world's largest number of active hunter-gatherers [1-3]. The genetic history of African rainforest hunter-gatherers and neighboring farmers is characterized by an ancient divergence more than 100,000 years ago, together with recent population collapses and expansions, respectively [4-12]. While the demographic past of rainforest hunter-gatherers has been deeply characterized, important aspects of their history of genetic adaptation remain unclear.
View Article and Find Full Text PDFCuba is the most populated country in the Caribbean and has a rich and heterogeneous genetic heritage. Here, we take advantage of dense genomic data from 860 Cuban individuals to reconstruct the genetic structure and ancestral origins of this population. We found distinct admixture patterns between and within the Cuban provinces.
View Article and Find Full Text PDFTheor Popul Biol
July 2018
Signatures of recent historical admixture are ubiquitous in human populations. We present a mechanistic model of admixture with two source populations, encompassing recurrent admixture periods and study the distribution of admixture fractions for finite but arbitrary genome size. We provide simulation-based methods to estimate the introgression parameters and discuss the implications of reaching stationarity on estimability of parameters when there are recurrent admixture events with different rates.
View Article and Find Full Text PDFUnderstanding how deleterious genetic variation is distributed across human populations is of key importance in evolutionary biology and medical genetics. However, the impact of population size changes and gene flow on the corresponding mutational load remains a controversial topic. Here, we report high-coverage exomes from 300 rainforest hunter-gatherers and farmers of central Africa, whose distinct subsistence strategies are expected to have impacted their demographic pasts.
View Article and Find Full Text PDFLinguistic and genetic data have been widely compared, but the histories underlying these descriptions are rarely jointly inferred. We developed a unique methodological framework for analysing jointly language diversity and genetic polymorphism data, to infer the past history of separation, exchange and admixture events among human populations. This method relies on approximate Bayesian computations that enable the identification of the most probable historical scenario underlying each type of data, and to infer the parameters of these scenarios.
View Article and Find Full Text PDFJoint analyses of genes and languages, both of which are transmitted in populations by descent with modification-genes vertically by Mendel's laws, language via combinations of vertical, oblique, and horizontal processes [1-4]-provide an informative approach for human evolutionary studies [5-10]. Although gene-language analyses have employed extensive data on individual genetic variation [11-23], their linguistic data have not considered corresponding long-recognized [24] variability in individual speech patterns, or idiolects. Genetically admixed populations that speak creole languages show high genetic and idiolectal variation-genetic variation owing to heterogeneity in ancestry within admixed groups [25, 26] and idiolectal variation owing to recent language formation from differentiated sources [27-31].
View Article and Find Full Text PDFBantu languages are spoken by about 310 million Africans, yet the genetic history of Bantu-speaking populations remains largely unexplored. We generated genomic data for 1318 individuals from 35 populations in western central Africa, where Bantu languages originated. We found that early Bantu speakers first moved southward, through the equatorial rainforest, before spreading toward eastern and southern Africa.
View Article and Find Full Text PDFPaul Verdu introduces the anthropology and genetics of African populations often summarised under the label 'Pygmy'.
View Article and Find Full Text PDFSex-biased admixture has been observed in a wide variety of admixed populations. Genetic variation in sex chromosomes and functions of quantities computed from sex chromosomes and autosomes have often been examined to infer patterns of sex-biased admixture, typically using statistical approaches that do not mechanistically model the complexity of a sex-specific history of admixture. Here, expanding on a model of Verdu and Rosenberg (2011) that did not include sex specificity, we develop a model that mechanistically examines sex-specific admixture histories.
View Article and Find Full Text PDFThe initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations.
View Article and Find Full Text PDFSociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown.
View Article and Find Full Text PDFAfrican pygmies are at the lower extreme of human variation in adult stature and many evolutionary hypotheses have been proposed to explain this phenotype. We showed in a recent study that the difference in average stature of about 10 cm observed between contemporary pygmies and neighboring non-pygmies has a genetic component. Nevertheless, the genetic basis of African pygmies' short stature remains unknown.
View Article and Find Full Text PDFAdmixed populations have been used for inferring migrations, detecting natural selection, and finding disease genes. These applications often use a simple statistical model of admixture rather than a modeling perspective that incorporates a more realistic history of the admixture process. Here, we develop a general model of admixture that mechanistically accounts for complex historical admixture processes.
View Article and Find Full Text PDF