The family of 5-HT4 receptors comprises 16 putative splice variants. We have previously shown that there are differences in signal transduction of the h5-HT(4a) and h5-HT(4b) receptors. In the present study, the internalization of these two splice variants following receptor stimulation was investigated with confocal microscopy on living cells.
View Article and Find Full Text PDFThe effect of antagonist pretreatment on the signaling properties of the human metabotropic glutamate 1a (hmGlu1a) receptor was examined in stably transfected L929sA cells. Pre-exposure of hmGlu1a receptor-expressing cells to the mGlu1 receptor antagonists (S)-4-carboxy-3-hydroxyphenylglycine and 7-(hydroxyimino)cyclo-propa[b]chromen-1a-carboxylate ethyl ester dramatically enhanced subsequent glutamate-induced phosphoinositide hydrolysis and intracellular [Ca(2+)] rise. We found clear indications that the antagonist-mediated enhancement of glutamate-evoked mGlu1a receptor signaling is caused by the development of mGlu1a receptor supersensitivity: the potency of glutamate was increased by 3-fold after 24 h antagonist pretreatment and the potency of the antagonists was significantly decreased in antagonist-pretreated cells.
View Article and Find Full Text PDFThis study documents differences in ligand binding and signal transduction properties between the human (h) 5-hydroxytryptamine (5-HT)4a and h5-HT4b receptor splice variants stably expressed in human embryonic kidney 293 cells. The fraction of the [3H]5-HT high-affinity site relative to the whole receptor population measured with [3H]GR113808 was higher for the h5-HT4a isoform (around 0.4) than for the 5-HT4b isoform (around 0.
View Article and Find Full Text PDF