Publications by authors named "Paul V Rucker"

The selective inhibition of RET kinase as a treatment for relevant cancer types including lung adenocarcinoma has garnered considerable interest in recent years and prompted a variety of efforts toward the discovery of small-molecule therapeutics. Hits uncovered via the analysis of archival kinase data ultimately led to the identification of a promising pyrrolo[2,3-]pyrimidine scaffold. The optimization of this pyrrolo[2,3-]pyrimidine core resulted in compound , which demonstrated potent RET kinase inhibition and robust efficacy in RET-driven tumor xenografts upon multiday dosing in mice.

View Article and Find Full Text PDF

RET (REarranged during Transfection) kinase gain-of-function aberrancies have been identified as potential oncogenic drivers in lung adenocarcinoma, along with several other cancer types, prompting the discovery and assessment of selective inhibitors. Internal mining and analysis of relevant kinase data informed the decision to investigate a pyrazolo[1,5-]pyrimidine scaffold, where subsequent optimization led to the identification of compound WF-47-JS03 (), a potent RET kinase inhibitor with >500-fold selectivity against KDR (Kinase insert Domain Receptor) in cellular assays. In subsequent mouse studies, compound demonstrated effective brain penetration and was found to induce strong regression of RET-driven tumor xenografts at a well-tolerated dose (10 mg/kg, po, qd).

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) agonists are emerging as important potential therapeutics for the treatment of nonalcoholic steatohepatitis (NASH) patients, as they exert positive effects on multiple aspects of the disease. FXR agonists reduce lipid accumulation in the liver, hepatocellular inflammation, hepatic injury, and fibrosis. While there are currently no approved therapies for NASH, the bile acid-derived FXR agonist obeticholic acid (OCA; 6-ethyl chenodeoxycholic acid) has shown promise in clinical studies.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid-derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) is a nuclear receptor that acts as a master regulator of bile acid metabolism and signaling. Activation of FXR inhibits bile acid synthesis and increases bile acid conjugation, transport, and excretion, thereby protecting the liver from the harmful effects of bile accumulation, leading to considerable interest in FXR as a therapeutic target for the treatment of cholestasis and nonalcoholic steatohepatitis. We identified a novel series of highly potent non-bile acid FXR agonists that introduce a bicyclic nortropine-substituted benzothiazole carboxylic acid moiety onto a trisubstituted isoxazole scaffold.

View Article and Find Full Text PDF

Deregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization.

View Article and Find Full Text PDF

The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (-)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (-)-4a are described.

View Article and Find Full Text PDF

A series of N-aryl pyridinone inhibitors of p38 mitogen activated protein (MAP) kinase were designed and prepared based on the screening hit SC-25028 (1) and structural comparisons to VX-745 (5). The focus of the investigation targeted the dependence of potency and metabolic stability on the benzyloxy connectivity, the role of the C-6 position and the substitution pattern on the N-phenyl ring. Further optimization produced the highly selective and potent pyridinones 2 and 3.

View Article and Find Full Text PDF

The structure based drug design, synthesis and structure-activity relationship of a series of C6 sulfur linked triazolopyridine based p38 inhibitors are described. The metabolic deficiencies of this series were overcome through changes in the C6 linker from sulfur to methylene, which was predicted by molecular modeling to be bioisosteric. X-ray of the ethylene linked compound 61 confirmed the predicted binding orientation of the scaffold in the p38 enzyme.

View Article and Find Full Text PDF

The identification and evolution of a series of potent and selective p38 inhibitors is described. p38 inhibitors based on a N-benzyl pyridinone high-throughput screening hit were prepared and their SAR explored. Their design was guided by ligand bound co-crystals of p38alpha.

View Article and Find Full Text PDF

Discodermolide is a potentially important antitumor agent that stabilizes microtubules and blocks cells at the G2/M phase of the cell cycle in a manner similar to that of Taxol. Discodermolide also has unique properties that distinguish it from Taxol. In the present study, photoaffinity-labeled discodermolide analogues are used to investigate their binding site in tubulin.

View Article and Find Full Text PDF

[structure: see text] The design, synthesis, and biological evaluation of a series of (+)-discodermolide molecular probes possessing photoaffinity and fluorescent appendages has been achieved. Stereoselective olefin cross-metathesis comprised a key tactic for construction of two of the molecular probes. Three photoaffinity probes were radiolabeled with tritium.

View Article and Find Full Text PDF

[Structure: see text] The design, syntheses, and biological evaluation of 22 totally synthetic analogues of the potent microtubule-stabilizing agent (+)-discodermolide (1) have been achieved. Structure-activity relationships of the C(19) carbamate were defined, exploiting two synthetically simplified scaffolds, as well as the parent (+)-discodermolide framework.

View Article and Find Full Text PDF