Publications by authors named "Paul T Rygiewicz"

Micronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms.

View Article and Find Full Text PDF

It is important to understand molecular effects on plants exposed to compounds released from use of products containing engineered nanomaterials. Here, we present mRNA sequencing data on transcriptome impacts to Douglas-fir following 2 weeks of sublethal exposure to 30:1 diluted airborne emissions released from combustion of diesel fuel containing engineered CeO nanoparticle catalysts (DECe). Our hypothesis was that chamber exposure to DECe would induce distinct transcriptome changes in seedling needles compared with responses to conventional diesel exhaust (DE) or filtered DECe Gas Phase.

View Article and Find Full Text PDF

Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use, and eventual disposal requires the capability to forecast and avoid potential problems. This review provides a framework to evaluate the health and safety implications of ENM releases into the environment, including purposeful releases such as for antimicrobial sprays or nano-enabled pesticides, and inadvertent releases as a consequence of other intended applications. Considerations encompass product life cycles, environmental media, exposed populations, and possible adverse outcomes.

View Article and Find Full Text PDF

Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to 2 widely used engineered metal oxide nanoparticles, titanium dioxide (nano-titania) and cerium dioxide (nano-ceria). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes found under nano-titania exposure. Nano-titania induced more differentially expressed genes in rosette leaves, whereas roots had more differentially expressed genes under nano-ceria exposure.

View Article and Find Full Text PDF

Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs.

View Article and Find Full Text PDF

The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli.

View Article and Find Full Text PDF

Elucidating mechanistic interactions between monovalent cations (Na(+)/K(+)) and engineered nanoparticle surfaces to alter particle stability in polar media have received little attention. We investigated relative preferential interaction of Na(+) and K(+) with carboxylate-functionalized silver nanoparticles (carboxylate-AgNPs) to determine if interaction preference followed the Hofmeister series (Na(+)>K(+)). We hypothesized that Na(+) will show greater affinity than K(+) to pair with carboxylates on AgNP surfaces, thereby destabilizing the colloidal system.

View Article and Find Full Text PDF

While conducting toxicity tests with nano titanium dioxide, the authors found that test suspensions were being contaminated with aluminum and titanium from tip erosion during direct sonication. The contaminating alloy particles had a measurable size distribution and zeta potential using dynamic light scattering, which changed the measured characteristics of the suspensions. Caution should be used when employing direct sonication for preparing test suspensions due to potential interferences of these particles in toxicological assessments.

View Article and Find Full Text PDF

We investigated the effects of elevated CO(2) (EC) [ambient CO(2) (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 degrees C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstructed soil-litter-plant systems, we anticipated greater C losses through ecosystem respiration (R(e)) than gains through gross photosynthesis (GPP), i.

View Article and Find Full Text PDF

We studied the effect of ectomycorrhizas and fertilization on soil microbial communities associated with roots of 10-year-old loblolly pine. Ectomycorrhizas were identified using a combination of community terminal restriction fragment profiling and matching of individual terminal restriction fragments to those produced from ectomycorrhizal clones and sequences recovered from roots and sporocarps. Differences between bacterial communities were initially determined using cluster analysis on community terminal restriction fragment profiles and through subsequent recovery of 16S rDNA clones.

View Article and Find Full Text PDF

Background: The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmental samples provide varying degrees of success at discriminating against plant DNA while maintaining a broad range of compatibility. Typically, it has been necessary to use multiple primer sets to accommodate the range of fungi under study, potentially creating artificial distinctions for fungal sequences that amplify with more than one primer set.

View Article and Find Full Text PDF

•  To further assess the usefulness of stable isotope ratios for understanding elemental cycling and fungal ecology, we measured δ N and δ C in ectomycorrhizal and saprotrophic macrofungi, plants, woody debris and soils from two old-growth conifer forests in Olympic National Park, Washington, USA. •  Ecosystem isotope patterns were similar at the two forests, but differences existed that appear to reflect soil nitrogen availability and C allocation within the ectomycorrhizal symbioses. δ N and δ C of ectomycorrhizal and saprotrophic fungi differed in both forests, and a dual δ N/δ C plot provided the best means of distinguishing them.

View Article and Find Full Text PDF

Stable isotopes in fruit bodies from field studies have been used to infer ectomycorrhizal or saprotrophic status and to understand carbon and nitrogen use, but few controlled culture studies have correlated source and fungal isotopic patterns. Here, we measured natural abundances of 15N and 13C in ten strains of ectomycorrhizal fungi and seven strains of saprotrophic fungi grown on agar with three different primary carbon sources: glucose, glucose plus malt extract, and potato dextrose agar. Eight fungal strains were also grown using position-specific, 13C-labelled glucose (C-1 through C-6 labelled).

View Article and Find Full Text PDF

•  Over 400 species of achlorophyllous vascular plants are thought to obtain all C from symbiotic fungi. Consequently, they are termed 'myco-heterotrophic.' However, direct evidence of myco-heterotrophy in these plants is limited.

View Article and Find Full Text PDF

The effect of ozone on tree growth and metabolism has been studied widely. Despite the research emphasis, relatively little is known about how the below-ground component responds when shoots are exposed to ozone, even though evidence suggests that ozone can affect roots more than shoots. Undemanding how ozone affects carbohydrate allocation throughout the plant is essential to understanding the mechanisms of response to ozone.

View Article and Find Full Text PDF