Publications by authors named "Paul T Massa"

Background And Hypothesis: Angiogenesis triggered by inflammation increases BBB permeability and facilitates macrophage transmigration. In the midbrain, we have discovered molecular alterations related to the blood-brain barrier (BBB), including endothelial cell changes associated with macrophage diapedesis, in neuroinflammatory schizophrenia and bipolar disorder, but changes in angiogenesis are yet to be reported. Hypothesis: We expected to discover molecular evidence of altered angiogenesis in the midbrain in individuals with schizophrenia and bipolar disorder compared to controls, with these changes more evident in "high" inflammation schizophrenia as compared to "low" inflammation.

View Article and Find Full Text PDF

COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens.

View Article and Find Full Text PDF

Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL).

View Article and Find Full Text PDF

Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial biogenesis involves importing over 1,000 preproteins from the cytosol, but the impact of preprotein properties on import efficiency is not well understood.
  • - Mutations in the ADP/ATP translocase 1 (ANT1) lead to protein accumulation that disrupts mitochondrial import, respiration, and cell viability, revealing a connection between these mutations and disease.
  • - The study highlights how synergistic mutations can cause severe disruptions in protein transport pathways, suggesting that specific amino acid compositions are crucial for preventing disease-related "clogging" in mitochondrial proteins.
View Article and Find Full Text PDF

Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation.

View Article and Find Full Text PDF

The histologic analysis of brain and spinal cord specimens isolated from mice is common practice for the assessment of pathology in this model system. To maintain the morphology of these delicate tissues, it is routine to administer a chemical fixative such as paraformaldehyde via cannulation of the heart in anesthetized animals (transcardial perfusion). Transcardial perfusion of the mouse heart has traditionally relied on the use of peristaltic pumps or air pressure to deliver both the saline and fixative solutions necessary for this process.

View Article and Find Full Text PDF

Glycolysis and mitochondrial respiration are essential for oligodendrocyte metabolism in both the developing and adult CNS. Based on recent reports on the effects of the proinflammatory cytokine IFN-γ on metabolism and on oligodendrocytes, we addressed whether IFN-γ may affect oligodendrocyte bioenergetics in ways relevant to CNS disease. Oligodendrocytes of mice treated with IFN-γ showed significant reductions in aerobic glycolysis and mitochondrial respiration.

View Article and Find Full Text PDF

Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter.

View Article and Find Full Text PDF

We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function.

View Article and Find Full Text PDF

Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease.

View Article and Find Full Text PDF
Article Synopsis
  • - Sarcoidosis is a complex immune disease that results in the formation of non-caseating granulomas, with unclear causes potentially linked to infections or environmental factors.
  • - The disease's pathogenesis involves pro-inflammatory pathways that activate macrophages, but distinguishing sarcoidosis from other similar diseases remains challenging, highlighting the need for better diagnostic methods.
  • - This study introduces a reliable technique that quantifies gene expression from tissue samples, revealing key differences between sarcoidosis and other granulomatous conditions, paving the way for improved diagnostic tools.
View Article and Find Full Text PDF
Article Synopsis
  • Cytokine signaling pathways are crucial in the development of inflammatory bowel disease (IBD), affecting conditions like ulcerative colitis (UC) and Crohn's disease (CD) with distinct and overlapping features.
  • The study involved analyzing 70 immune-related genes in colon biopsy samples from UC and CD patients, using an advanced gene quantification technique.
  • Results showed different regulation of immune signaling molecules between UC and CD, as well as between active and quiescent states, highlighting potential novel biomarkers for diagnosing and monitoring IBD.
View Article and Find Full Text PDF

The protein tyrosine phosphatase, SHP-1, is a negative regulator of proinflammatory signaling and autoimmune disease. We have previously reported reduced SHP-1 expression in peripheral blood leukocytes of subjects with multiple sclerosis (MS). Recent evidence indicates that virus-induced DNA methylation of the SHP-1 promoter is responsible for aberrant silencing of SHP-1 expression and function in hematopoietic cells that might relate to inflammatory diseases.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Here we document for the first time that the cytokine IL-33 is upregulated in both the periphery and the CNS of MS patients. Plasma IL-33 was elevated in MS patients compared to normal subjects and a three-month treatment of MS patients with interferon β-1a resulted in a significant decrease of IL-33 levels.

View Article and Find Full Text PDF

Interferon-β (IFN-β) is a current effective treatment for multiple sclerosis (MS) and exerts its therapeutic effects by down-modulating the systemic immune response and cytokine signaling. In clinical practice there are several formulations of interferon including a low dose of IFN-β 1a formulation of 30 μg IM once weekly (Avonex) and a high dose formulation of 44 μg SC three times weekly (Rebif). Recent studies suggest that Rebif is more efficacious compared to Avonex in preventing relapses and decreasing MRI activity in relapsing remitting MS (RRMS) patients.

View Article and Find Full Text PDF

SHP-1 is a protein tyrosine phosphatase that negatively regulates cytokine signaling and inflammatory gene expression. Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following intracranial inoculation with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Furthermore, SHP-1-deficient mice show a profound and predominant infiltration of blood-derived macrophages into the CNS following intracerebral injection of TMEV, and these macrophages are concentrated in areas of demyelination in brain and spinal cord.

View Article and Find Full Text PDF

Interferon-beta is a current treatment for multiple sclerosis (MS). Interferon-beta is thought to exert its therapeutic effects on MS by down-modulating the immune response by multiple potential pathways. Here, we document that treatment of MS patients with interferon beta-1a (Rebif) results in a significant increase in the levels and function of the protein tyrosine phosphatase SHP-1 in PBMCs.

View Article and Find Full Text PDF

Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice.

View Article and Find Full Text PDF

The protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling and inflammatory gene expression, both in the immune system and in the central nervous system (CNS). Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following inoculation with the Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Therefore, it became essential to investigate the mechanisms of TMEV-induced inflammation in the CNS of SHP-1-deficient mice.

View Article and Find Full Text PDF

IL-33 is a novel member of the IL-1 cytokine family and a potent inducer of type 2 immunity, as mast cells and Th2 CD4+ T cells respond to IL-33 with the induction of type 2 cytokines such as IL-13. IL-33 mRNA levels are extremely high in the CNS, and CNS glia possess both subunits of the IL-33R, yet whether IL-33 is produced by and affects CNS glia has not been studied. Here, we demonstrate that pathogen-associated molecular patterns (PAMPs) significantly increase IL-33 mRNA and protein expression in CNS glia.

View Article and Find Full Text PDF

We have previously shown that the protein tyrosine phosphatase SHP-1 is highly expressed in CNS glia and is an important modulator of cytokine signaling. As such, mice genetically lacking SHP-1 display constitutive myelin abnormalities, severe virus-induced demyelinating disease, and defects in innate anti-viral responses in the CNS. In this study, we show the differential distribution of the SHP-1 promoter-specific transcripts and demonstrate that several cytokines significantly induce SHP-1 expression in CNS glia.

View Article and Find Full Text PDF
Article Synopsis
  • The protein SHP-1 is essential for regulating inflammation and cytokine signaling, with its absence in mice leading to severe inflammatory responses and heightened sensitivity to TLR4 stimulation.
  • Heterozygous SHP-1-deficient mice displayed fear/anxiety behaviors after chronic LPS treatment, which were linked to specific cytokine profiles in their brains not seen in wild-type mice.
  • The study suggests a complex role for type 2 immunity in CNS inflammation, indicating that type 2 cytokines may enhance inflammatory responses rather than simply act as anti-inflammatory agents.
View Article and Find Full Text PDF

Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and demyelination in central nervous system. The present study investigates a possible similar role for SHP-1 in the human disease multiple sclerosis (MS). The levels of SHP-1 protein and mRNA in PBMCs of MS patients were significantly lower compared to normal subjects.

View Article and Find Full Text PDF

Nuclear factor kappaB (NFkappaB) is a dynamically modulated transcription factor with an extensive literature pertaining to widespread actions across species, cell types and developmental stages. Analysis of NFkappaB in a complex environment such as neural tissue suffers from a difficulty in simultaneously establishing both activity and location. Much of the available data indicate a profound recalcitrance of NFkappaB activation in neurons, as compared with most other cell types.

View Article and Find Full Text PDF