Publications by authors named "Paul T Gomez"

Cellular senescence is an aging mechanism characterized by cell cycle arrest and a senescence-associated secretory phenotype (SASP). Preclinical studies demonstrate that senolytic drugs, which target survival pathways in senescent cells, can counteract age-associated conditions that span several organs. The comparative efficacy of distinct senolytic drugs for modifying aging and senescence biomarkers in vivo has not been demonstrated.

View Article and Find Full Text PDF

Age-related changes in oligodendrocyte precursor cells (OPCs) contribute to white matter dysfunction. In aged mice, we hypothesized that myelin-dense fimbria OPCs possess niche-specific properties, compared to hippocampal OPCs. Aged fimbria OPCs were fewer, larger, and localized to neighboring microglia.

View Article and Find Full Text PDF
Article Synopsis
  • Cellular senescence, once thought to only occur in tissue cultures, is now recognized as playing complex roles in various biological processes across multiple species, including humans.
  • Traditional understanding of senescent cells primarily comes from lab studies, but these cells are rare in actual tissues, and fully developed cells can also show signs of senescence.
  • The SenNet Biomarkers Working Group has created recommendations for identifying senescent cells in tissues, analyzing literature on markers in mice and humans, and discussing new methods for detection that will assist researchers in the field.
View Article and Find Full Text PDF

Background: Chronic wounds have been associated with an elevated burden of cellular senescence, a state of essentially irreversible cell cycle arrest, resistance to apoptosis, and a secretory phenotype. However, whether senescent cells contribute to wound chronicity in humans remains unclear. The objective of this article is to assess the role of clinicopathological characteristics and cellular senescence in the time-to-healing of chronic wounds.

View Article and Find Full Text PDF

Brain white matter tracts undergo structural and functional changes linked to late-life cognitive decline, but the cellular and molecular contributions to their selective vulnerability are not well defined. In naturally aged mice, we demonstrate that senescent and disease-associated microglia (DAM) phenotypes converge in hippocampus-adjacent white matter. Through gold-standard gene expression and immunolabeling combined with high-dimensional spatial mapping, we identified microglial cell fates in aged white matter characterized by aberrant morphology, microenvironment reorganization, and expression of senescence and DAM markers, including galectin 3 (GAL3/), B-cell lymphoma 2 (), and cyclin dependent kinase inhibitors, including .

View Article and Find Full Text PDF