Publications by authors named "Paul Stupple"

Understanding the molecular pathogenesis of MLL fusion oncoprotein (MLL-FP) leukaemia has spawned epigenetic therapies that have improved clinical outcomes in this often-incurable disease. Using genetic and pharmacological approaches, we define the individual and combined contribution of KAT6A, KAT6B and KAT7, in MLL-FP leukaemia. Whilst inhibition of KAT6A/B is efficacious in some pre-clinical models, simultaneous targeting of KAT7, with the novel inhibitor PF-9363, increases the therapeutic efficacy.

View Article and Find Full Text PDF

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer.

View Article and Find Full Text PDF

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs.

View Article and Find Full Text PDF

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment.

View Article and Find Full Text PDF

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation.

View Article and Find Full Text PDF

A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective Na1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug-drug interaction concerns to deliver the desired balance of preclinical in vitro properties.

View Article and Find Full Text PDF

The neurotrophin family of growth factors, comprised of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), is implicated in the physiology of chronic pain. Given the clinical efficacy of anti-NGF monoclonal antibody (mAb) therapies, there is significant interest in the development of small molecule modulators of neurotrophin activity. Neurotrophins signal through the tropomyosin related kinase (Trk) family of tyrosine kinase receptors, hence Trk kinase inhibition represents a potentially "druggable" point of intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Voltage-gated sodium channels (Nav) are crucial for the electrical activity in excitable cells, and the study highlights two specific small molecule inhibitors that target these channels with high selectivity for human Nav1.3/Nav1.1 and Nav1.7.* -
  • The inhibitors identified interact with a unique region of the Nav channel structure, specifically the S1-S4 voltage sensor segment of Domain 4, which is different from where other known inhibitors bind.* -
  • The research suggests that certain amino acid residues in the Nav channels determine selectivity for the inhibitors and differences in how various species respond to them, providing insights into developing new targeted treatments.*
View Article and Find Full Text PDF

Several non-benzimidazole containing inhibitors of respiratory syncytial virus are described. Core template modification, analysis of antiviral activity, physicochemistry and optimisation of properties led to the thiazole-imidazole 13, that showed a good potency and pharmacokinetic profile in the rat.

View Article and Find Full Text PDF

Optimising drug properties can be an important strategy to limit penetration into the CNS and offers advantages in reducing the risk of undesirable neurological effects When considering the design of these drugs it is important to consider the relative influx and efflux rates at the relevant biological membranes The highest degree of restriction at the brain is probably achievable by utilising active transport to exclude compounds from the brain Affinity for the efflux transporters Pgp and BCRP has been achieved in two in-house chemistry programmes by increasing polar surface area, which resulted in highly orally bioavailable low CNS penetrant compounds in preclinical species.

View Article and Find Full Text PDF

Preventing entry of HIV into human host cells has emerged as an attractive approach to controlling viral replication. Maraviroc 1 is an approved antagonist of the human CCR5 receptor which prevents the entry of HIV. Herein, we report the design and discovery of a series of imidazopiperidine CCR5 antagonists which retain the attractive antiviral profile and window over hERG activity of maraviroc 1, combined with improved absorption profiles in rat and dog.

View Article and Find Full Text PDF

We prepared three discreet cohorts of potent non-nucleoside HIV reverse transcriptase inhibitors (NNRTIs) based on the recently reported 3-cyanophenoxypyrazole lead 3. Several of these compounds displayed very promising anti-HIV activity in vitro, safety, pharmacokinetic and pharmaceutical profiles. We describe our analysis and conclusions leading to the selection of alcohol 5 (UK-453,061, lersivirine) for clinical development.

View Article and Find Full Text PDF

Our efforts to reduce overall lipophilicity and increase ligand-lipophilicity efficiency (LLE) by modification of the 3- and 5-substituents of pyrazole 1, a novel non-nucleoside HIV reverse transcriptase inhibitor (NNRTI) prototype were unsuccessful. In contrast replacement of the substituted benzyl group with corresponding phenylthio or phenoxy groups resulted in marked improvements in potency, ligand efficiency (LE) and LLE.

View Article and Find Full Text PDF

The design and synthesis of a novel series of non-nucleoside HIV reverse transcriptase inhibitors (NNRTIs) based on a pyrazole template is described. These compounds are active against wild type reverse transcriptase (RT) and retain activity against clinically important mutants.

View Article and Find Full Text PDF

An efficient enantioselective total synthesis of (R)-rolipram and an efficient enantioselective formal synthesis of (3S,4R)-paroxetine has been achieved using the highly enantioselective Michael addition of malonate nucleophiles as key steps in both cases.

View Article and Find Full Text PDF

5-Aryl-1,3-dioxolan-4-one heterocycles derived from mandelic acid derivatives and hexafluoroacetone have been identified as new and effective pro-nucleophiles in highly diastereo- and enantioselective Michael addition reactions to nitro olefins catalyzed by bifunctional epi-9-amino-9-deoxy cinchona alkaloid derivatives. Diastereoselectivities up to 98% and enantioselectivities up to 89% for a range of nitro olefins and 5-aryl-1,3-dioxolan-4-ones under mild reaction conditions are reported.

View Article and Find Full Text PDF