Printing human tissues and organs replete with biomimetic vascular networks is of growing interest. While it is possible to embed perfusable channels within acellular and densely cellular matrices, they do not currently possess the biomimetic architectures found in native vessels. Here, coaxial sacrificial writing into functional tissues (co-SWIFT) is developed, an embedded bioprinting method capable of generating hierarchically branching, multilayered vascular networks within both granular hydrogel and densely cellular matrices.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2023
We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2020