Publications by authors named "Paul Stabila"

Purpose: To evaluate the pharmacokinetics of ciliary neurotrophic factor (CNTF) delivered over a period of up to 2 years by an intraocular encapsulated cell technology (ECT) implant in patients with retinitis pigmentosa (RP) and geographic atrophy (GA).

Methods: Patients from phase 1 RP (CNTF1); phase 2 GA (CNTF2); and phase 2 late and early stage RP (CNTF3, and CNTF4) studies received an ECT-CNTF implant, designated as "NT-501," in one eye. Per protocol, all implants (n = 10) were removed at 6 months from the CNTF1 study patients.

View Article and Find Full Text PDF

Secondary cone degeneration in the transgenic rats carrying the S334ter rhodopsin mutation (S334ter-3 rats) starts at the peak of rod degeneration (PD12) and progresses with age. An early sign of cone degeneration is the loss of cone outer segments (COS) distributed in many small patches throughout the retina. Cone cell death occurs about 2 months later.

View Article and Find Full Text PDF

Objective: To measure vascular endothelial growth factor (VEGF) levels in aqueous humor, serum, and plasma in diabetic and nondiabetic cataractous dogs.

Methods: Canine VEGF was assayed in the plasma and serum of 32 dogs (20 diabetics; 12 nondiabetics) and aqueous humor in 57 eyes of those dogs (39 diabetic; 18 nondiabetic) undergoing phacoemulsification, using a commercial canine VEGF assay. Statistical analysis was performed using Fisher's PLSD, t-test, and regression analysis to compare values by diabetic status, duration of diabetes, age, weight, gender, left vs.

View Article and Find Full Text PDF

Background: Cone photoreceptors are responsible for color and central vision. In the late stage of retinitis pigmentosa and in geographic atrophy associated with age-related macular degeneration, cone degeneration eventually causes loss of central vision. In the present work, we investigated cone degeneration secondary to rod loss in the S334ter-3 transgenic rats carrying the rhodopsin mutation S334ter.

View Article and Find Full Text PDF

The objective of this study was to evaluate the in vivo secretion profile of ciliary neurotrophic factor (CNTF) from either of two genetically engineered cell lines contained in the encapsulated cell therapy (ECT)-based NT-501 device. ECT devices were loaded with either a low or high CNTF-secreting cell line and implanted into rabbit eyes for 1, 3, 7, 14, 30, 60, 90, 135, 180, or 365 days. After explantation, the vitreous was sampled and devices were allowed to incubate in endothelial serum-free medium for 24 h at 37 degrees C.

View Article and Find Full Text PDF

Purpose: The objective of the present study was to evaluate the therapeutic efficacy of ciliary neurotrophic factor (CNTF) delivered through encapsulated cells directly into the vitreous of the eye in an rcd1 canine model of retinitis pigmentosa. The dose-range effect of the treatment was also investigated.

Methods: Polymer membrane capsules (1.

View Article and Find Full Text PDF