In the Maasai Steppe, public health and economy are threatened by African Trypanosomiasis, a debilitating and fatal disease to livestock (African Animal Trypanosomiasis -AAT) and humans (Human African Trypanosomiasis-HAT), if not treated. The tsetse fly is the primary vector for both HAT and AAT and climate is an important predictor of their occurrence and the parasites they carry. While understanding tsetse fly distribution is essential for informing vector and disease control strategies, existing distribution maps are old and were based on coarse spatial resolution data, consequently, inaccurately representing vector and disease dynamics necessary to design and implement fit-for-purpose mitigation strategies.
View Article and Find Full Text PDFExtraintestinal pathogenic Escherichia coli (ExPEC) contain tktA and tktB which code for transketolases involved in the pentose phosphate pathway. Recent studies demonstrated that a third gene coding for transketolase 1 (tkt1) was located in a pathogenicity island of avian and human ExPEC belonging to phylogenetic group B2. In the present study, in silico analysis of tkt1 revealed 68% and 69% identity with tktA and tktB, respectively, of ExPEC and 68% identity with tktA and tktB of E.
View Article and Find Full Text PDFAvian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies.
View Article and Find Full Text PDF