J Deaf Stud Deaf Educ
December 2024
This qualitative study focused on the synergistic experience of a group of Deaf1 and hearing participants during a 2-week international study-abroad program to investigate the impact of immersing hearing American Sign Language (ASL) undergraduate majors with culturally Deaf faculty and doctoral students. 20 participants included undergraduate students who were ASL majors, Deaf doctoral students, faculty members, and an interpreter. Data included narratives with the Deaf faculty leader and the hearing ASL interpreter, a content analysis with the hearing undergraduates, and a section focused on the Deaf perspective with a thematic analysis with the Deaf faculty, students, and alumni.
View Article and Find Full Text PDFAccurately defining hierarchical relationships between human stem cells and their progeny, and using this knowledge for new cellular therapies, will undoubtedly lead to further successful treatments for life threatening and chronic diseases, which represent substantial burdens on patient quality of life and to healthcare systems globally. Clinical translation relies in part on appropriate biomarker, in vitro manipulation and transplantation strategies. CD164 has recently been cited as an important biomarker for enriching both human haematopoietic and skeletal stem cells, yet a thorough description of extant human CD164 monoclonal antibody (Mab) characteristics, which are critical for identifying and purifying these stem cells, was not discussed in these articles.
View Article and Find Full Text PDFThe presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency.
View Article and Find Full Text PDFThe fetal liver is the site of a major expansion of the hematopoietic stem cell (HSC) pool and is also a privileged organ to study megakaryocyte progenitor differentiation. We identified in the mouse fetal liver at day 13.5 a discrete stromal cell population harboring a CD45TER119CD31CD51VCAM-1PDGFRα (VP) phenotype that lacked colony-forming unit fibroblast activity and harbored an hepatocyte progenitor signature.
View Article and Find Full Text PDF3-Fluorophenmetrazine (3-FPM) is a stimulant-like novel psychoactive substance (NPS) and fluorinated analog of phenmetrazine that has recently appeared on the recreational drug market, with limited published information. Likewise, the synthetic opioid U-47700 has gained popularity among recreational drug users and is frequently detected in postmortem casework. We present the case history, autopsy and toxicological findings of a fatality involving the designer drugs 3-FPM and U-47700 for the first time in the literature.
View Article and Find Full Text PDFBackground Aims: Despite ethnic diversity and ready availability of cryopreserved, human leukocyte antigen-typed cord blood (CB), delayed engraftment remains a significant hurdle to successful CB transplantation. Suboptimal homing of CB hematopoietic stem and progenitor cells (HSPCs) to the hematopoietic microenvironment (HM) is thought to be responsible and due to low levels of HSPC fucosylation. Fucosylation (decoration with sialyl-Lewis) may improve HSPC homing to HM by increasing the strength of HSPC/E-selectin interactions, where E-selectin is constitutively expressed by HM microvasculature.
View Article and Find Full Text PDFIn this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit-fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit-fibroblasts.
View Article and Find Full Text PDFDelayed engraftment is a major limitation of cord blood transplantation (CBT), due in part to a defect in the cord blood (CB) cells' ability to home to the bone marrow. Because this defect appears related to low levels of fucosylation of cell surface molecules that are responsible for binding to P- and E-selectins constitutively expressed by the marrow microvasculature, and thus for marrow homing, we conducted a first-in-humans clinical trial to correct this deficiency. Patients with high-risk hematologic malignancies received myeloablative therapy followed by transplantation with 2 CB units, one of which was treated ex vivo for 30 minutes with the enzyme fucosyltransferase-VI and guanosine diphosphate fucose to enhance the interaction of CD34(+) stem and early progenitor cells with microvessels.
View Article and Find Full Text PDFCD34(+) cell dose provides a measure of hematopoietic tissue that predicts the rate of engraftment upon transplant. It is positively correlated with multiple measures of hematopoietic recovery, including platelet engraftment. Here we identify a subpopulation of CD34(+) cells that coexpress a surface antigen--MA6, which is more positively correlated with platelet engraftment in a clinical setting than CD34(+) alone.
View Article and Find Full Text PDFThis study evaluates the frequency and determinants of preventive care counseling by HIV medical care providers (HMCPs) during encounters with newly diagnosed and established HIV-infected patients. Data used were from a probability sample of HMCPs in Houston/Harris County, Texas, surveyed in 2009. Overall, HMCPs offered more preventive care counseling to newly diagnosed than the established patients (adjusted odds ratio [AOR] = 7.
View Article and Find Full Text PDFAlong with scientific and regulatory issues, the translation of cell and tissue therapies in the routine clinical practice needs to address standardization and cost-effectiveness through the definition of suitable manufacturing paradigms.
View Article and Find Full Text PDFBackground Aims: Advantages associated with the use of cord blood (CB) transplantation include the availability of cryopreserved units, ethnic diversity and lower incidence of graft-versus-host disease compared with bone marrow or mobilized peripheral blood. However, poor engraftment remains a major obstacle. We and others have found that ex vivo fucosylation can enhance engraftment in murine models, and now ex vivo treatment of CB with fucosyltransferase (FT) VI before transplantation is under clinical evaluation (NCT01471067).
View Article and Find Full Text PDFThis study assessed the potential of highly purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) in combination with the anti-scarring protein decorin to repair the injured spinal cord (SC). Donor hMPCs isolated from spinal cord injury (SCI) patients were transplanted into athymic rats as a suspension graft, alone or after previous treatment with, core (decorin(core)) and proteoglycan (decorin(pro)) isoforms of purified human recombinant decorin. Decorin was delivered via mini-osmotic pumps for 14 days following sub-acute (7 day) or chronic (1 month) SCI.
View Article and Find Full Text PDFLiposarcomas are tumors arising in white adipose tissue (WAT) with avidity for local recurrence. Aggressive dedifferentiated liposarcomas (DDLS) may arise from well-differentiated subtypes (WDLS) upon disease progression, however, this key issue is unresolved due in large part to knowledge gaps about liposarcoma cellular composition. Here, we wished to improve insights into liposarcoma cellular hierarchy.
View Article and Find Full Text PDFHealthcare training environments, particularly in multidisciplinary training settings, present unique ethical dilemmas as a result of the multiple relationships faculty must balance while working with trainees. The historical and current perspectives on multiple roles in training environments will first be summarized. Evidence of a gap between the extant discipline specific guidelines and the realities of situations that occur in healthcare training will then be revealed, as illustrated in a case example.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are the focus of intensive efforts worldwide directed not only at elucidating their nature and unique properties but also developing cell-based therapies for a diverse range of diseases. More than three decades have passed since the original formulation of the concept, revolutionary at the time, that multiple connective tissues could emanate from a common progenitor or stem cell retained in the postnatal bone marrow. Despite the many important advances made since that time, substantial ambiguities still plague the field regarding the nature, identity, function, mode of isolation and experimental handling of MSCs.
View Article and Find Full Text PDFBackground: Poor engraftment due to low cell doses restricts the usefulness of umbilical-cord-blood transplantation. We hypothesized that engraftment would be improved by transplanting cord blood that was expanded ex vivo with mesenchymal stromal cells.
Methods: We studied engraftment results in 31 adults with hematologic cancers who received transplants of 2 cord-blood units, 1 of which contained cord blood that was expanded ex vivo in cocultures with allogeneic mesenchymal stromal cells.
This study aimed to determine the potential of purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) to repair the injured spinal cord (SC) after transplantation into T-cell-deficient athymic RNU nude rats following acute moderate contusive spinal cord injury (SCI). hMPCs were isolated from the bone marrow (BM) stroma of SCI patients and transplanted as a suspension graft in medium [with or without immunosuppression using cyclosporin A (CsA)]. Extensive anatomical analysis shows statistically significant improvement in functional recovery, tissue sparing, and cyst reduction.
View Article and Find Full Text PDFDirected specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDR(-)PDGFRα(+) progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFβ signaling controller. Isolated (GFP(+))KDR(-)PDGFRα(+) mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFβ and BMP.
View Article and Find Full Text PDFPlatelet-rich plasma (PRP) was prepared from human adult peripheral blood and from human umbilical cord (uc) blood and the properties were compared in a series of in vitro bioassays. Quantification of growth factors in PRP and platelet-poor plasma (PPP) fractions revealed increased levels of mitogenic growth factors PDGF-AB, PDGF-BB, and FGF-2, the angiogenic agent VEGF and the chemokine RANTES in ucPRP compared to adult PRP (aPRP) and PPP. To compare the ability of the various PRP products to stimulate proliferation of human bone marrow (BM), rat BM and compact bone (CB)-derived mesenchymal stem cells (MSC), cells were cultured in serum-free media for 4 and 7 days with varying concentrations of PRP, PPP, or combinations of recombinant mitogens.
View Article and Find Full Text PDFDelayed engraftment remains a major hurdle after cord blood (CB) transplantation. It may be due, at least in part, to low fucosylation of cell surface molecules important for homing to the bone marrow microenvironment. Because fucosylation of specific cell surface ligands is required before effective interaction with selectins expressed by the bone marrow microvasculature can occur, a simple 30-minute ex vivo incubation of CB hematopoietic progenitor cells with fucosyltransferase-VI and its substrate (GDP-fucose) was performed to increase levels of fucosylation.
View Article and Find Full Text PDFThe low incidence of CFU-F significantly complicates the isolation of homogeneous populations of mouse bone marrow stromal cells (BMSCs), a common problem being contamination with hematopoietic cells. Taking advantage of burgeoning evidence demonstrating the perivascular location of stromal cell stem/progenitors, we hypothesized that a potential reason for the low yield of mouse BMSCs is the flushing of the marrow used to remove single-cell suspensions and the consequent destruction of the marrow vasculature, which may adversely affect recovery of BMSCs physically associated with the abluminal surface of blood vessels. Herein, we describe a simple methodology based on preparation and enzymatic disaggregation of intact marrow plugs, which yields distinct populations of both stromal and endothelial cells.
View Article and Find Full Text PDF