Half-metallic Heusler compounds have been extensively studied in the recent years, both experimentally and theoretically, for potential applications in spin-based electronics. Here, we present the results of a combined theoretical and experimental study of the quaternary Heusler compound NiFeMnAl. Our calculations indicate that this material is half-metallic in the ground state and maintains its half-metallic electronic structure under a considerable range of external hydrostatic pressure and biaxial strain.
View Article and Find Full Text PDFThe high radiation field associated with spent nuclear fuel (U O ) pellets produces an array of reactive radical species that impact the corrosion and formation of secondary alteration phases. Dioxygen radicals are important as radiolysis products, but the interaction between these reactive oxygen species and U O and its effects on the resultant alteration phases is unclear. We report the first example of a U superoxide compound and explore its reactivity in the environments relevant to the storage of spent nuclear fuel.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2021
Magnetocrystalline anisotropy (MCA) is one of the key parameters investigated in spin-based electronics (spintronics), e.g. for memory applications.
View Article and Find Full Text PDFA decrease in flow from the iconic travertine mound springs of the Great Artesian Basin in South Australia has led to the oxidation of hypersulfidic soils and extreme soil acidification, impacting their unique groundwater dependent ecosystems. The build-up of pyrite in these systems occurred over millennia by the discharge of deep artesian sulfate-containing groundwaters through organic-rich subaqueous soils. Rare iron and aluminium hydroxysulfate minerals form thick efflorescences due to high evaporation rates in this arid zone environment, and the oxidised soils pose a significant risk to local aquatic and terrestrial ecosystems.
View Article and Find Full Text PDFFollowing the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions.
View Article and Find Full Text PDFThe ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope.
View Article and Find Full Text PDFA severe drought from 2007 to 2010 resulted in the lowest river levels (1.75 m decline from average) in over 90 years of records at the end of the Murray-Darling Basin in South Australia. Due to the low river level and inability to apply irrigation, the groundwater depth on the adjacent agricultural flood plain also declined substantially (1-1.
View Article and Find Full Text PDFAcid sulfate soils with sulfuric material (pH<4) can have significant impacts on surface water quality and aquatic ecosystems due to low pH and high soluble metal concentrations in runoff and drainage discharges. There has been limited research on the complex geochemical transformations that occur along flow pathways from the soil acidity source to receiving waters. We studied the integrated geochemistry of metals in acid sulfate soils with sulfuric material, groundwater, drain and river water in the Lower Murray River (South Australia) over a 2 year period.
View Article and Find Full Text PDFTwo new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO' mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry.
View Article and Find Full Text PDF