Publications by authors named "Paul Schwab"

Arsenic (As) is a common contaminant in soils, and analysis of soils by inductively coupled plasma-mass spectrometry (ICP-MS) is often used to detect As in soil extracts. Internal standards (ISs) are part of ICP-MS analyses to enhance precision and accuracy by compensating for instrument variability; however, an improper choice of IS can result in negative analytical bias. The goal of this study was to develop a protocol for evaluating ISs commonly used in ICP-MS.

View Article and Find Full Text PDF

Hydrated lime is widely used as a mineral filler to improve several properties of bituminous materials such as reducing the susceptibility of the composite to moisture-induced damage. Although experimental evidence supports the efficacy of using hydrated lime as a mineral filler, the molecular scale mechanism of reactivity of hydrated lime within the bitumen to reduce moisture damage is not understood. This is important when considering the durability of structural applications of bituminous materials such as asphalt concrete pavements subjected to both environmental and loading extremes.

View Article and Find Full Text PDF

The increasing trend of adopting organic fertilization in rice production can impact grain yields and soil methane (CH) emissions. To simulate these impacts in the absence of long-term field data, a process-based biogeochemical model, Denitrification and Decomposition (DNDC version 9.5) was used.

View Article and Find Full Text PDF

The preventive health care needs of transgender persons are nearly identical to the rest of the population. Special consideration should be given, however, to the impact of gender-affirming hormone regimens and surgical care on preventive screenings. Providers should integrate a more comprehensive view of health when caring for transgender persons and address the impact of social determinants and other barriers to accessing affirming, inclusive health care.

View Article and Find Full Text PDF

The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (CeO NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops.

View Article and Find Full Text PDF

Small arms firing ranges (SAFRs) contain a mixed amount of bullets and bullet fragments accumulated throughout their designed lifetime. Lead-antimony (Pb-Sb) alloy copper (Cu) jacketed bullets are a common modern ammunition used at SAFRs. The impact of bullets with berm material (i.

View Article and Find Full Text PDF

The adsorption characteristics of an iron cyanide complex, soluble Prussian blue KFe(III)[Fe(II)(CN)(6)], were evaluated for representative soil minerals and soil at pH 3.7, 6.4 and 9.

View Article and Find Full Text PDF

Phytoremediation has been proposed for treatment of cyanide-contaminated soil. This study was conducted to identify plants with the highest potential for phytoremediation of iron cyanide contaminated soil. Multiple cultivars of two cyanogenic species, sorghum (Sorghum bicolor) and flax (Linum usitatissimum), and one non-cyanogenic species, switchgrass (Panicum virgatum L), were selected for evaluation.

View Article and Find Full Text PDF

Several biological assays were used to evaluate the toxic effects of contaminants in soil after phytoremediation. During the treatment process, significant decreases in overall toxicity were observed. Specifically, earthworm survivability and lettuce germination increased over the study period.

View Article and Find Full Text PDF

Phytoremediation has been demonstrated to be a viable cleanup alternative for soils contaminated with petroleum products. This study evaluated the application of phytoremediation to soil from a manufactured gas plant (MGP) site with high concentrations of recalcitrant, polycyclic aromatic hydrocarbons (PAHs). Two greenhouse studies investigated the potential dissipation and plant translocation of PAHs by fescue (Festuca arundinacea) and switchgrass (Panicum virgatum) in the first experiment and zucchini (Curcubita pepo Raven) in the second.

View Article and Find Full Text PDF

Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response.

View Article and Find Full Text PDF

The fate of radiolabeled cyanide in soil was investigated during exposure to cyanogenic plant species, sorghum (Sorghum bicolor var. P721) and flax (Linum usitassimum var. Omega-Gold), in fully-contained growth chambers.

View Article and Find Full Text PDF

A column experiment was conducted to investigate Zn, Cd, and Pb leaching from mine tailings as affected by the addition of organic amendments. Composted yard waste, composted cattle manure, and cattle manure aged for one month increased heavy metal leaching from mine tailings when compared to an unamended control. Aged cattle manure and composted cattle manure significantly increased Zn concentration in the leachate.

View Article and Find Full Text PDF

The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months.

View Article and Find Full Text PDF

Contamination of soil by hazardous substances poses a significant threat to human, environmental, and ecological health. Cleanup of the contaminants using destructive, invasive technologies has proven to be expensive and more importantly, often damaging to the natural resource properties of the soil, sediment, or aquifer. Phytoremediation is defined as the cleanup of contaminated sites using plants.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin.

View Article and Find Full Text PDF

A 12-mo greenhouse study was conducted to evaluate the contribution of root death and decay on the dissipation of polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soil. The contaminated soil was previously treated by land-farming, but residual PAHs remained after treatment. Tall fescue (Festuca arundinacea Schreb.

View Article and Find Full Text PDF

A greenhouse study was conducted over a 12-month period to investigate the fate of polycyclic aromatic hydrocarbons (PAHs) in soil using phytoremediation as a secondary treatment. The soil was pretreated by composting for 12 weeks, then planted with tall fescue (Festuca arundinacea), annual ryegrass (Lolium multiflorum), and yellow sweet clover (Melilotus officinalis). Two sets of unvegetated controls also were evaluated, one fertilized and one unfertilized.

View Article and Find Full Text PDF

A growth chamber study was conducted to investigate the fate of pyrene in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). For this study, 14C-labeled pyrene was used, and distribution of 14C activity was assessed after plant establishment.

View Article and Find Full Text PDF