Publications by authors named "Paul S Murray"

E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness mediated by E-cadherin is conferred by its extracellular cadherin domains and is regulated by an assembly of intracellular adaptors and enzymes associated with its cytoplasmic tail. We used proximity biotinylation and quantitative proteomics to identify 561 proteins in the vicinity of the cytoplasmic tail of E-cadherin.

View Article and Find Full Text PDF

Vertebrate adherens junctions mediate cell-cell adhesion via a "classical" cadherin-catenin "core" complex, which is associated with and regulated by a functional network of proteins, collectively named the cadherin adhesome ("cadhesome"). The most basal metazoans have been shown to conserve the cadherin-catenin "core", but little is known about the evolution of the cadhesome. Using a bioinformatics approach based on both sequence and structural analysis, we have traced the evolution of this larger network in 26 organisms, from the uni-cellular ancestors of metazoans, through basal metazoans, to vertebrates.

View Article and Find Full Text PDF

In the Rous sarcoma virus (RSV) Gag protein, the 25 amino-acid residues of the p10 domain immediately upstream of the CA domain are essential for immature particle formation. We performed systematic mutagenesis on this region and found excellent correlation between the amino-acid side chains required for in vitro assembly and those that participate in the p10-CA dimer interface in a previously described crystal structure. We introduced exogenous cysteine residues that were predicted to form disulphide bonds across the dimer interface.

View Article and Find Full Text PDF

The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification.

View Article and Find Full Text PDF

The mechanisms by which secretory phospholipases A(2) (PLA(2)s) exert cellular effects are not fully understood. Group IIF PLA(2) (gIIFPLA(2)) is a structurally unique secretory PLA(2) with a long C-terminal extension. Homology modeling suggests that the membrane-binding surface of this acidic PLA(2) contains hydrophobic residues clustered near the C-terminal extension.

View Article and Find Full Text PDF

The matrix domain (MA) of Gag polyproteins performs multiple functions throughout the retroviral life cycle. MA structures have an electropositive surface patch that is implicated in membrane association. Here, we use computational methods to demonstrate that electrostatic control of membrane binding is a central characteristic of all retroviruses.

View Article and Find Full Text PDF

The MA domain of retroviral Gag proteins mediates association with the host cell membrane during assembly. The biochemical nature of this interaction is not well understood. We have used an in vitro flotation assay to directly measure Rous sarcoma virus (RSV) MA-membrane interaction in the absence of host cell factors.

View Article and Find Full Text PDF

We have cloned and overexpressed a variant of Arabidopsis thaliana beta-carbonic anhydrase (Q158A) that deletes the functional equivalent of the backbone amide NH of Thr-199 in human alpha-carbonic anhydrase II. The latter residue is hypothesized to be important in catalyzing the rate of CO(2)(-) HCO (3)(-) interconversion in alpha-carbonic anhydrase but this hypothesis is not directly testable in that enzyme. Kinetic studies of a variant of the functionally equivalent residue in A.

View Article and Find Full Text PDF