In the frog, vestibular efferent fibers innervate only type-II vestibular hair cells. Through this direct contact with hair cells, efferent neurons are capable of modifying transmitter release from hair cells onto primary vestibular afferents. The major efferent transmitter, acetylcholine (ACh), is known to produce distinct pharmacological actions involving several ACh receptors.
View Article and Find Full Text PDFFrog vestibular organs are endowed with a prominent cholinergic efferent innervation whose stimulation results in several different effects, thereby suggesting diversity in the expression of postsynaptic acetylcholine (ACh) receptors. The application of ACh can mimic efferent stimulation in producing both an inhibition and a facilitation of afferent discharge which are thought to be mediated by at least two distinct ACh receptors present on vestibular hair cells, i.e.
View Article and Find Full Text PDFThere is growing evidence for a nitric oxide/cyclic GMP pathway of signal transduction in the vestibular system. Recently, two isoforms of nitric oxide (NO) synthase (nNOS and eNOS) and NO itself have been identified at the light microscopic level in the vestibulocochlear system of mice using specific antibodies and a new fluorescence indicator. In order to acquire more information about signal transduction and tissue modulation in this neuroepithelium at the cellular and subcellular levels, ultrathin sections of London Resin White-embedded saccule maculae of the frog Rana pipiens were incubated with various concentrations of commercially available antibodies to nNOS and eNOS.
View Article and Find Full Text PDFIn the present work, we characterized the effects of serotonin type 3 receptor ligands on recombinant and native alpha 9 alpha 10-containing nicotinic acetylcholine receptors (nAChRs). Our results indicate that the recombinant alpha 9 alpha 10 nAChR shares striking pharmacological properties with 5-HT(3) ligand-gated ion channels. Thus, 5-HT(3) receptor antagonists block ACh-evoked currents in alpha 9 alpha 10-injected Xenopus laevis oocytes with a rank order of potency of tropisetron (IC(50), 70.
View Article and Find Full Text PDFFluorescence immunocytochemistry indicates that enzymatically isolated semi-circular canal (SCC) hair cells express metabotropic glutamate receptors (mGluRs) 1a and 5. Antibody-antigen preadsorption controls proved entirely negative. Applied while mechanically stimulating the posterior SCC with a piezo-electric bimorph, the non-competitive, mGluR5-selective antagonist MPEP-HCl (1 microM-3 mM) dose-dependently reduces mechanically evoked facilitation of afferent discharge rate (IC50 136 microM; n = 4), while having no effect on tonic, unstimulated afferent discharge.
View Article and Find Full Text PDFThe response of the semicircular canal (SCC) to the group I mGluR-selective agonist dihydroxyphenylglycine (DHPG; 300 microM) - facilitation of afferent discharge rate - was dose-dependently reduced by the phospholipase C inhibitor U-73122 (1-100 microM; IC(50): 22 microM), the smooth endoplasmic reticulum Ca(++) ATPase inhibitor thapsigargin (100 nM-3 microM; IC(50): 500 nM), and xestospongin C (100 pM-1 microM; IC(50): 11 nM), an inositol trisphosphate receptor (IP(3)R) antagonist. Ryanodine, a modulator of Ca(++)-induced Ca(++) release, biphasically facilitated, then suppressed this response (1 nM-1 mM; approximate IC(50): 50 microM). 5 mM caffeine increased the amplitude (34.
View Article and Find Full Text PDF