Publications by authors named "Paul S Dyer"

Members of the lichen-forming fungal genus are known to occur in cold polar and high altitudinal environments. Two new species, and , are now described from the high altitude Deosai Plains, Pakistan, based on phenotypic, multigene phylogenetic and chemical evidence. Phenotypically, is characterised by orbicular light-brown thalli 1.

View Article and Find Full Text PDF

Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway.

View Article and Find Full Text PDF

Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown.

View Article and Find Full Text PDF

Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, , that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods.

View Article and Find Full Text PDF

A sexual cycle was described in 2009 for the opportunistic fungal pathogen , opening up for the first time the possibility of using techniques reliant on sexual crossing for genetic analysis. The present study was undertaken to evaluate whether the technique 'bulk segregant analysis' (BSA), which involves detection of differences between pools of progeny varying in a particular trait, could be applied in conjunction with next-generation sequencing to investigate the underlying basis of monogenic traits in . Resistance to the azole antifungal itraconazole was chosen as a model, with a dedicated bioinformatic pipeline developed to allow identification of SNPs that differed between the resistant progeny pool and resistant parent compared to the sensitive progeny pool and parent.

View Article and Find Full Text PDF
Article Synopsis
  • Infections from the fungal pathogen Aspergillus fumigatus are showing increasing resistance to standard azole antifungal treatments, yet there's limited knowledge on how patients acquire these drug-resistant strains from the environment.
  • A study analyzing 218 fungal isolates from the UK and Ireland revealed two main genetic groups (clades A and B), with most environmental resistance found in clade A and strong evidence of patients getting infections from environmental sources.
  • The research also identified genetic regions under positive selection that relate to azole resistance, highlighting the need for more understanding of how these fungi develop drug resistance, particularly in patients who are already vulnerable due to respiratory infections.
View Article and Find Full Text PDF

Compost is an ecological niche for Aspergillus fumigatus due to its role as a decomposer of organic matter and its ability to survive the high temperatures associated with the composting process. Subsequently, composting facilities are associated with high levels of A. fumigatus spores that are aerosolized from compost and cause respiratory illness in workers.

View Article and Find Full Text PDF

The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (ever in exual evelopment). In previous studies with , it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the homologue in the opportunistic human pathogen was investigated.

View Article and Find Full Text PDF

A sexual cycle in was first described in 2009 with isolates from Dublin, Ireland. However, the extent to which worldwide isolates can undergo sexual reproduction has remained unclear. In this study a global collection of 131 isolates was established with a near 1:1 ratio of mating types.

View Article and Find Full Text PDF

Eyespot, caused by the related fungal pathogens and , is an important cereal stem-base disease in temperate parts of the world. Both species are dispersed mainly by splash-dispersed conidia but are also known to undergo sexual reproduction, yielding apothecia containing ascospores. Field diagnosis of eyespot can be challenging, with other pathogens causing similar symptoms, which complicates eyespot management strategies.

View Article and Find Full Text PDF

Certain Aspergillus species such as Aspergillus flavus and A. parasiticus are well known for the formation of sclerotia. These developmental structures are thought to act as survival structures during adverse environmental conditions but are also a prerequisite for sexual reproduction.

View Article and Find Full Text PDF

Fungi can fuse with other individuals to enable cooperative growth, although this process is restricted by certain self/non-self recognition systems. A novel layer of compatibility has now been discovered, acting at the stage of germling cell wall fusion, showing the remarkable complexity of allorecognition in fungi.

View Article and Find Full Text PDF

Aspergillus fumigatus is an opportunistic human fungal pathogen, capable of causing invasive aspergillosis in patients with compromised immune systems. The fungus was long considered a purely asexual organism. However, a sexual cycle was reported in 2009, with methods described to induce mating under laboratory conditions.

View Article and Find Full Text PDF

Background: Loop-mediated isothermal amplification (LAMP) assays, which operate at a single temperature and require no postreaction processing, have been described for rapid species-specific detection of numerous fungi. The technology has much less commonly been applied to identification of other key genetic traits such as fungicide resistance, and has not yet been applied to mating-type determination in any fungus.

Objectives: To develop first LAMP assays for mating-type identification in a fungus, in this instance with the saprophytic mould and human opportunistic pathogen Aspergillus fumigatus, a heterothallic ascomycete requiring isolates of opposite mating type (MAT1-1, MAT1-2) for sexual reproduction.

View Article and Find Full Text PDF

Fungi and arthropods represent some of the most diverse organisms on our planet, yet the ecological relationships between them remain largely unknown. In animals, fungal growth on body surfaces is often hazardous and is known to cause mortality. In contrast, here we report the presence of an apparently non-harmful mycobiome on the cuticle of whip spiders (Arachnida: Amblypygi).

View Article and Find Full Text PDF

Fungal reproduction is regulated by the mating-type (MAT1) locus, which typically comprises two idiomorphic genes. The presence of one or both allelic variants at the locus determines the reproductive strategy in fungi-homothallism versus heterothallism. It has been hypothesized that self-fertility via homothallism is widespread in lichen-forming fungi.

View Article and Find Full Text PDF
Article Synopsis
  • Two proposals have been put forward to allow DNA sequences to be used as types for naming certain fungi, which could fundamentally alter the definition of nomenclatural types and lead to various issues in scientific reproducibility and nomenclatural instability.
  • The authors argue against these proposals, suggesting that they would not effectively address the challenges of naming taxa based solely on DNA and propose instead that formulas for naming candidate taxa could be a better solution without changing existing nomenclature rules.
View Article and Find Full Text PDF

Sexual propagation accompanied by recombination and the formation of spore-containing fruiting bodies is a cornerstone of fungal genetics and biology. In the human pathogen Aspergillus fumigatus sexual identity has previously been shown to be determined by MAT1-1-1 or MAT1-2-1 genes which act as transcriptional regulators and are present within idiomorphs found at the MAT locus. We here report the identification and first characterization of a further novel gene, termed MAT1-2-4, that is present in the MAT1-2 idiomorph of A.

View Article and Find Full Text PDF

Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures.

View Article and Find Full Text PDF

Background: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus.

View Article and Find Full Text PDF

Recent changes in the Fungal Code of Nomenclature and developments in molecular phylogeny are about to lead to dramatic changes in the naming of medically important molds and yeasts. In this article, we present a widely supported and simple proposal to prevent unnecessary nomenclatural instability.

View Article and Find Full Text PDF

The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli.

View Article and Find Full Text PDF

We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve.

View Article and Find Full Text PDF