Publications by authors named "Paul S Baxter"

A variety of proteins can be encoded by a single gene via the differential splicing of exons. In neurons this form of alternative splicing can be controlled by activity-dependent calcium signaling, leading to the properties of proteins being altered, including ion channels, neurotransmitter receptors and synaptic cell adhesion molecules. The pre-synaptic cell adhesion molecule Neurexin 1 () is alternatively spliced at splice-site 4 (SS4) which governs exon 22 inclusion (SS4) and consequently postsynaptic NMDA receptor responses.

View Article and Find Full Text PDF

Background: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3.

View Article and Find Full Text PDF
Article Synopsis
  • Nrf2 is a key transcription factor that helps protect cells from stress by regulating antioxidant and detoxification genes, providing both cell-specific and nearby neuronal protection in the brain.
  • While Nrf2 is typically activated by inhibiting its degradation via Keap1, research shows that oxidative stress can activate Nrf2 through a different, Keap1-independent pathway.
  • This alternative signaling means that using drugs that inhibit Keap1 may still be effective in enhancing Nrf2 activation for therapeutic purposes, even in the presence of disease-related oxidative stress.
View Article and Find Full Text PDF

Microglia, brain-resident macrophages, require instruction from the CNS microenvironment to maintain their identity and morphology and regulate inflammatory responses, although what mediates this is unclear. Here, we show that neurons and astrocytes cooperate to promote microglial ramification, induce expression of microglial signature genes ordinarily lost in vitro and in age and disease in vivo, and repress infection- and injury-associated gene sets. The influence of neurons and astrocytes separately on microglia is weak, indicative of synergies between these cell types, which exert their effects via a mechanism involving transforming growth factor β2 (TGF-β2) signaling.

View Article and Find Full Text PDF

Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response.

View Article and Find Full Text PDF

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1 mouse hippocampus, with increased cellular excitability.

View Article and Find Full Text PDF

The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse.

View Article and Find Full Text PDF

Transcriptomic changes induced in one cell type by another mediate many biological processes in the brain and elsewhere; however, achieving artifact-free physical separation of cell types to study them is challenging and generally allows for analysis of only a single cell type. We describe an approach using a co-culture of distinct cell types from different species that enables physical cell sorting to be replaced by in silico RNA sequencing (RNA-seq) read sorting, which is possible because of evolutionary divergence of messenger RNA (mRNA) sequences. As an exemplary experiment, we describe the co-culture of purified neurons, astrocytes, and microglia from different species (12-14 d).

View Article and Find Full Text PDF

The human brain generally remains structurally and functionally sound for many decades, despite the post-mitotic and non-regenerative nature of neurons. This is testament to the brain's profound capacity for homeostasis: both neurons and glia have in-built mechanisms that enable them to mount adaptive or protective responses to potentially challenging situations, ensuring that cellular viability and functionality is maintained. The high and variable metabolic and mitochondrial activity of neurons places several demands on the brain, including the task of neutralizing the associated reactive oxygen species (ROS) produced, to limit the accumulation of oxidative damage.

View Article and Find Full Text PDF

How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain.

View Article and Find Full Text PDF

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca(2+) transients, which are essential for the anti-apoptotic actions of PACAP.

View Article and Find Full Text PDF