We identify a new class of surface waves that arise at a plasma-liquid interface due to resonant coupling between discrete plasma pattern modes and a continuum of interfacial liquid surface wave modes. A wave mode is selected due to localized excitation by the plasma, and standing waves result when waves excited from different locations interact. These waves propagate with a slower phase velocity than traditional capillary waves, but exhibit the same damping behavior with respect to liquid viscosity.
View Article and Find Full Text PDFIt is known that glow discharges with a water anode inject and form solvated electrons at the plasma-liquid interface, driving a wide variety of reduction reactions. However, in systems with a water cathode, the production and role of solvated electrons are less clear. Here, we present evidence for the direct detection of solvated electrons produced at the interface of an argon plasma and a water cathode via absorption spectroscopy.
View Article and Find Full Text PDFWhen a nonthermal plasma and a liquid form part of the same circuit, the liquid may function as a cathode, in which case electrons are emitted from the liquid into the gas to sustain the plasma. As opposed to solid electrodes, the mechanism of this emission has not been established for a liquid, even though various theories have attempted to explain it via chemical processes in the liquid phase. In this work, we tested the effects of the interfacial chemistry on electron emission from water, including the role of pH as well as the hydroxyl radical, the hydrogen atom, the solvated electron, and the presolvated electron; it was found that none of these species are critical to sustain the plasma.
View Article and Find Full Text PDFThe total internal reflection absorption spectroscopy (TIRAS) method presented in this article uses an inexpensive diode laser to detect solvated electrons produced by a low-temperature plasma in contact with an aqueous solution. Solvated electrons are powerful reducing agents, and it has been postulated that they play an important role in the interfacial chemistry between a gaseous plasma or discharge and a conductive liquid. However, due to the high local concentrations of reactive species at the interface, they have a short average lifetime (~1 µs), which makes them extremely difficult to detect.
View Article and Find Full Text PDFWe construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ∼10^{19}m^{-3} and an electric field of ∼10^{4}V/m on the liquid side of the interface.
View Article and Find Full Text PDFSolvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution.
View Article and Find Full Text PDFPlasmas (gas discharges) formed at the surface of liquids can promote a complex mixture of reactions in solution. Here, we decouple two classes of reactions, those initiated by electrons (electrolysis) and those initiated by gaseous neutral species, by examining an atmospheric-pressure microplasma formed in different ambients at the surface of aqueous saline (NaCl) solutions. Electrolytic reactions between plasma electrons and aqueous ions yield an excess of hydroxide ions (OH(-)), making the solution more basic, while reactions between reactive neutral species formed in the plasma phase and the solution lead to nitrous acid (HNO2), nitric acid (HNO3), and hydrogen peroxide (H2O2), making the solution more acidic.
View Article and Find Full Text PDF