Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation.
View Article and Find Full Text PDFOxidized and enzymatically modified low-density lipoproteins (oxLDL and eLDL) play a key role in early stages of atherogenesis. Their uptake by recruited macrophages leads to endolysosomal phospholipidosis or foam cell formation, respectively, each of which is preceded by highly differential lipid restructuring processes. We applied (1)H-NMR spectroscopy (NMRS) to elucidate these structural rearrangements both in consequence of lipoprotein modifications and following phagocytosis.
View Article and Find Full Text PDFStem cells offer great potential for regenerative medicine because they regenerate damaged tissue by cell replacement and/or by stimulating endogenous repair mechanisms. Although stem cells are defined by their functional properties, such as the potential to proliferate, to self-renew, and to differentiate into specific cell types, their identification based on the expression of specific markers remains vague. Here, profiles of stem cell metabolism might highlight stem cell function more than the expression of single genes/markers.
View Article and Find Full Text PDF