Context: As a novel coronavirus swept the world in early 2020, thousands of software developers began working from home. Many did so on short notice, under difficult and stressful conditions.
Objective: This study investigates the effects of the pandemic on developers' wellbeing and productivity.
Gene therapy utilizing lipid-based delivery systems holds tremendous promise for the treatment of cancer. However, due to the potential adverse inflammatory and/or immune effects upon systemic administration, treatments thus far have been predominantly limited to intratumoral or regional treatment. Previous studies from our group have demonstrated the antitumor efficacy of systemically administered, folate-targeted, lipid-protamine-DNA complexes (LPD-PEG-Folate) against breast cancer using an immunodeficient xenogenic murine model.
View Article and Find Full Text PDFThe incorporation of pegylated lipid into Lipid-Protamine-DNA (LPD-PEG) lipopolyplexes causes a decrease of their in vitro transfection activity. This can be partially attributed to a reduction in particle binding to cells. To restore particle binding and specifically target LPD formulations to tumor cells, the lipid-peptide conjugate DSPE-PEG5K-succinyl-ACDCRGDCFCG-COOH (DSPE-PEG5K-RGD-4C) was generated and incorporated into LPD formulations (LPD-PEG-RGD).
View Article and Find Full Text PDFThe adenovirus type 5 E1A protein has been demonstrated to elicit antitumor effects through the induction of apoptosis, inhibition of cell cycle progression, induction of differentiated epithelial phenotypes, repression of oncogene expression and function, and sensitization to chemotherapeutic agents and radiation. These unique properties have led to use of the E1A gene in adenoviral and lipid-based gene therapy systems, and it has demonstrated antitumor effects in tumor xenograft model systems. However, the delivery systems used in those studies are best suited for local or intratumoral delivery rather than systemic delivery.
View Article and Find Full Text PDFBiotechnol Appl Biochem
August 2002
Quantitative assays for the characterization of multi-component lipopolyplexes and their individual constituents are crucial for determining the consistency of formulation protocols which are ultimately reflected in biological activity. Lipid-polycation-DNA formulations consisting of lipids, polycations and DNA are of interest because they have been demonstrated to be efficient gene-delivery vehicles when administered systemically. We have developed a panel of analytical techniques to characterize these lipopolyplexes.
View Article and Find Full Text PDF