Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.
View Article and Find Full Text PDFThis paper reports results of a comparative study of widely used machine learning algorithms applied to predictive toxicology data mining. The machine learning algorithms involved were chosen in terms of their representability and diversity, and were extensively evaluated with seven toxicity data sets which were taken from real-world applications. Some results based on visual analysis of the correlations of different descriptors to the class values of chemical compounds, and on the relationships of the range of chosen descriptors to the performance of machine learning algorithms, are emphasised from our experiments.
View Article and Find Full Text PDF