Int J Syst Evol Microbiol
October 2022
A novel thermoacidophilic archeaon, strain J1 (=DSM 112778,=JCM 34702), was isolated from a hot pool in a volcanic area of Java, Indonesia. Cells of the strain were irregular, motile cocci of 1.0-1.
View Article and Find Full Text PDFFerrous iron- and sulfur-oxidizing Acidihalobacter species and similar so far unclassified bacteria have been isolated from the islands of Vulcano (Italy) and Milos (Greece), specifically from where seawater was acidified at sulfide-rich geothermal sites. Acidithiobacillus species which tolerated concentrations of chloride that inhibit most Acidithiobacillus spp. were also isolated from sites on both islands: these were At.
View Article and Find Full Text PDFStrain MG, isolated from an acidic pond sediment on the island of Milos (Greece), is proposed as a novel species of ferrous iron- and sulfur-oxidizing Acidithiobacillus. Currently, four of the eight validated species of this genus oxidize ferrous iron, and strain MG shares many key characteristics with these four, including the capacities for catalyzing the oxidative dissolution of pyrite and for anaerobic growth via ferric iron respiration. Strain MG also grows aerobically on hydrogen and anaerobically on hydrogen coupled to ferric iron reduction.
View Article and Find Full Text PDFMicrobiology (Reading)
March 2018
The mineral sulfide-oxidising Acidithiobacillus ferrooxidans has been extensively studied over many years but some fundamental aspects of its metabolism remain uncertain, particularly with regard to its anaerobic oxidation of sulfur. This label-free, liquid chromatography-electron spray ionisation-mass spectrometry-based proteomic analysis estimated relative protein abundance during aerobic and anaerobic growth of At. ferrooxidans.
View Article and Find Full Text PDFAnalysis of phylogenomic metrics of a recently released draft genome sequence of the halotolerant, acidophile 'Thiobacillus prosperus' DSM 5130 indicates that it is not a member of the genus Thiobacillus within the class Betaproteobacteria as originally proposed. Based on data from 16S rRNA gene phylogeny, and analyses of multiprotein phylogeny and average nucleotide identity (ANI), we show that it belongs to a new genus within the family Ectothiorhodospiraceae, for which we propose the name Acidihalobacter gen. nov.
View Article and Find Full Text PDFSome novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation.
View Article and Find Full Text PDFThe halotolerant acidophile 'Thiobacillus prosperus' was shown to require chloride for growth. With ferrous iron as substrate, growth occurred at a rate similar to that of the well-studied acidophile Acidithiobacillus ferrooxidans. Previously, the salt (NaCl) requirement of 'T.
View Article and Find Full Text PDFThe Calvin-Benson-Bassham (CBB) cycle has been extensively studied in proteobacteria, cyanobacteria, algae and plants, but hardly at all in Gram-positive bacteria. Some characteristics of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a cluster of potential CBB cycle genes in a Gram-positive bacterium are described in this study with two species of Sulfobacillus (Gram-positive, facultatively autotrophic, mineral sulfide-oxidizing acidophiles). In contrast to the Gram-negative, iron-oxidizing acidophile Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans grew poorly autotrophically unless the CO(2) concentration was enhanced over that in air.
View Article and Find Full Text PDFA novel species of Acidimicrobium appeared to be the predominant ferrous iron oxidizer in a mixed culture that effected the continuous, efficient extraction of nickel from a mineral concentrate at 49 degrees C, but it was not isolated in pure culture. It outcompeted Acidimicrobium ferrooxidans, which was expected to have a major role in iron oxidation in reactors gassed with air, and was outnumbered at 49 degrees C only by the sulfur-oxidizing Acidithiobacillus caldus. Sulfobacillus species were expected to compete with Acidimicrobium species when culture aeration was enriched with carbon dioxide, but they were a minor component of the populations with and without this enrichment.
View Article and Find Full Text PDFGenes of Sulfolobus metallicus that appeared to be upregulated in relation to growth on either ferrous iron or sulfur were identified using subtractive hybridization of cDNAs. The genes upregulated during growth on ferrous iron were found in a cluster, and most were predicted to encode membrane proteins. Quantitative reverse transcription-PCR of cDNA showed upregulation of most of these genes during growth on ferrous iron and pyrite compared to results during growth on sulfur.
View Article and Find Full Text PDFMicrobiology (Reading)
April 1996
A new species of ferrous-iron-oxidizing, moderately thermophilic, acidophilic bacteria, , has been described. Two isolates of the species differed only in the tendency of one, previously known as strain TH3, to grow in filaments. The chromosomal DNA base composition is between 67 and 69 mol% G + C.
View Article and Find Full Text PDFSeveral isolates of Gram-positive, acidophilic, moderately thermophilic, ferrous-iron- and mineral-sulphide-oxidizing bacteria were examined to establish unequivocally the characteristics of Sulfobacillus-like bacteria. Two species were evident: Sulfobacillus thermosulfidooxidans with 48-50 mol% G+C and Sulfobacillus acidophilus sp. nov.
View Article and Find Full Text PDF