The fluid-fluid interface is a complex environment for a floating object where the statics and dynamics may be governed by capillarity, gravity, inertia, and other external body forces. Yet, the alignment of these forces in intricate ways may result in beautiful pattern formation and self-assembly of these objects, as in the case of crystalline order observed with bubble rafts or colloidal particles. While interfacial self-assembly has been explored widely, controlled manipulation of floating objects, drops, at the fluid-fluid interface still remains a challenge largely unexplored.
View Article and Find Full Text PDFCoalescence and breakup of drops are classic problems in fluid physics that often involve self-similarity and singularity formation. While the coalescence of suspended drops is axisymmetric, the coalescence of drops on a substrate is inherently three-dimensional. Yet, studies so far have only considered this problem in two dimensions.
View Article and Find Full Text PDF