Many transition metal complexes exhibit infrared or visible optical absorption arising from d-d transitions that are the key to functionality in technological applications and biological processes. The observed spectral characteristics of the absorption spectra depend on several underlying physical parameters whose relative contributions are still not fully understood. Although conventional arguments based on ligand-field theory can be invoked to rationalize the peak absorption energy, they cannot describe the detailed features of the observed spectral profile such as the spectral width and shape, or unexpected correlations between the oscillator strength and absorption peak position.
View Article and Find Full Text PDFFe-doped lithium sodium silicate glasses codoped with Sn and C to promote the Fe²⁺ redox state are investigated under simultaneous excitation at the first and third harmonics of a nanosecond Nd:YAG laser. The aim is to evaluate critical parameters associated with the potential use of this material as an optical filter that transmits the third harmonic but blocks the fundamental frequency. Estimations of the excited-state absorption coefficient and photobleaching (reduction of absorption at the fundamental) are provided.
View Article and Find Full Text PDFWe investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented.
View Article and Find Full Text PDFThe self-focusing characteristic of 355 nm, 3.3 ns pulses propagating through phosphate glass samples is found to significantly change during repeated exposure. The results indicate this change is related to the formation of color centers in the material as well as the generation of a transient defect population during exposure to the laser pulses.
View Article and Find Full Text PDF