Publications by authors named "Paul Q Trombley"

The standard protocol for studying the spiking properties of single neurons is the application of current steps while monitoring the voltage response. Although this is informative, the jump in applied current is artificial. A more physiological input is where the applied current is ramped up, reflecting chemosensory input.

View Article and Find Full Text PDF

In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information.

View Article and Find Full Text PDF

The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose function is to increase odor discrimination through mostly inhibitory synaptic mechanisms. However, it is not well understood whether there is more than one neuronal type of OB DA neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA neurons for recording via whole-cell electrophysiology.

View Article and Find Full Text PDF

Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.

View Article and Find Full Text PDF

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors mediates most fast excitatory transmission. Glutamate binding to AMPA receptors (AMPARs) causes most AMPARs to rapidly and completely desensitize, and their desensitization kinetics influence synaptic timing. Thus, factors that alter AMPAR desensitization influence synaptic transmission.

View Article and Find Full Text PDF

Glutamate is the neurotransmitter used at most excitatory synapses in the mammalian brain, including those in the olfactory bulb (OB). There, ionotropic glutamate receptors including N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a role in processes such as reciprocal inhibition and glomerular synchronization. Kainate receptors (KARs) represent another type of ionotropic glutamate receptor, which are composed of five (GluK1-GluK5) subunits.

View Article and Find Full Text PDF

The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB.

View Article and Find Full Text PDF

Circadian rhythms are daily rhythms that regulate many biological processes - from gene transcription to behavior - and a disruption of these rhythms can lead to a myriad of health risks. Circadian rhythms are entrained by light, and their 24-h oscillation is maintained by a core molecular feedback loop composed of canonical circadian ("clock") genes and proteins. Different modulators help to maintain the proper rhythmicity of these genes and proteins, and one emerging modulator is dopamine.

View Article and Find Full Text PDF

Zinc is a trace element with a multitude of roles in biological systems including structural and cofactor functions for proteins. Although most zinc in the central nervous system (CNS) is protein bound, the CNS contains a pool of mobile zinc housed in synaptic vesicles within a subset of neurons. Such mobile zinc occurs in many brain regions, such as the hippocampus, hypothalamus, and cortex, but the olfactory bulb (OB) contains one of the highest such concentrations in the CNS.

View Article and Find Full Text PDF

Although recent results suggest roles for NMDA and AMPA receptors in odor encoding, little is known about kainate receptors (KARs) in the olfactory bulb (OB). Molecular, immunological, and electrophysiological techniques were used to provide a functional analysis of KARs in the OB. Reverse transcriptase-polymerase chain reaction revealed that the relative level of expression of KAR subunits was GluR5 approximately GluR6 approximately KA2 > KA1 >> GluR7.

View Article and Find Full Text PDF

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) mediate rapid responses at most central excitatory synapses, including those in the olfactory bulb (OB). These receptors are composed of the glutamate subunits GluR1-4, which each has two splice variant (flip/flop) forms. We recently showed that AMPARs on OB neurons are kinetically and pharmacologically diverse.

View Article and Find Full Text PDF

Increasing evidence suggests that zinc modulates synaptic transmission in the olfactory bulb and other brain regions. We investigated the sensitivity of AMPA receptors on the bulb's two primary neuronal populations to several concentrations of zinc. Zinc (30-1000 microM) was coapplied to mitral/tufted cells and interneurons during AMPA-evoked currents, and current responses (potentiation, inhibition, no effect) were analyzed.

View Article and Find Full Text PDF

AMPA receptors, which are composed of four subunits (GluR1-4), help mediate synaptic transmission at most excitatory synapses in the brain. Their subunit composition influences the kinetics of AMPA receptor deactivation and desensitization, thus, the efficacy of synaptic transmission. Immunohistochemical data suggest that AMPA receptor subunit expression in the olfactory bulb (OB) follows a distinct laminar and cellular distribution.

View Article and Find Full Text PDF

The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study, whole cell electrophysiological and primary culture techniques were employed to characterize the neuromodulatory properties of dopamine on glutamatergic transmission between rat OB mitral/tufted (M/T) cells and interneurons.

View Article and Find Full Text PDF