NCKX5 is an ion exchanger expressed mostly in pigment cells; however, the functional role for this protein in melanogenesis is not clear. A variant allele of SLC24A5, the gene encoding NCKX5, has been shown to correlate with lighter skin pigmentation in humans, indicating a key role for SLC24A5 in determining human skin colour. SLC24A5 expression has been found to be elevated in melanoma.
View Article and Find Full Text PDFNCKX1-5 are proteins involved in K-dependent Na/Ca exchange in various signal tissues. Here we present a homology model of NCKX2 based on the crystal structure of the NCX_Mj transporter found in Methanoccocus jannaschii. Molecular dynamics simulations were performed on the resultant wild-type NCKX2 model and two mutants (D548N and D575N) loaded with either four Na ions or one Ca ion and one K ion, in line with the experimentally observed transport stoichiometry.
View Article and Find Full Text PDFK(+)-dependent Na(+)/Ca(2+) exchangers belong to the solute carrier 24 (SLC24A1-5) gene family of membrane transporters. Five different gene products (NCKX1-5) have been identified in humans, which play key roles in biological processes including vision, olfaction, and skin pigmentation. NCKXs are bi-directional membrane transporters that transport 1 Ca(2+)+K(+) ions in exchange for 4 Na(+) ions.
View Article and Find Full Text PDFThe SLC24 gene family encodes K(+)-dependent Na(+)-Ca(2+) exchangers or NCKX proteins. The NCKX4 and NCKX5 isoforms have been shown to be important for pigmentation, and single nucleotide polymorphism (SNP) in both alleles of the SLC24a5 gene is the major genetic determinant for light skin in Caucasians. NCKX4 is thought to operate in the surface membrane of cells, whereas NCKX5 is thought to be located in intracellular membranes.
View Article and Find Full Text PDFThe Solute Carrier Family 24 (SLC24) belongs to the CaCA super family of Ca(2+)/cation antiporters and codes for five different K(+)- dependent Na(+)- Ca(2+) exchangers (NCKX1-5). NCKX proteins play a critical role in Ca(2+) homeostasis in a wide variety of biological processes such as vision, olfaction, enamel formation, Melanocortin-4-receptor-dependent satiety and skin pigmentation. NCKX transcripts are widely found throughout the brain.
View Article and Find Full Text PDFThe human SLC24 gene family contains five members encoding the NCKX1-5 proteins that function as K(+)-dependent Na⁺-Ca²⁺ exchangers. NCKX proteins have been shown to play critical roles in retinal rod and cone photoreceptors, olfactory neurons, epidermal melanocytes, and the retinal pigment epithelium. NCKX transcripts are also found in many other tissues, in particular throughout the brain, but their specific physiological roles yet need to be elucidated in most cases.
View Article and Find Full Text PDFMammalian Na (+) /Ca ( 2+) (NCX) and Na (+) /Ca ( 2+) -K (+) exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS.
View Article and Find Full Text PDFMembers of the SLC24 gene family encode K(+)-dependent Na(+)/Ca(2+) exchangers (NCKX) that utilize both the inward Na(+) and outward K(+) gradients to extrude Ca(2+) from cells. There are five human SLC24 genes that play a role in biological process as diverse as vision in retinal rod and cone photoreceptors, olfaction, skin pigmentation and at least three of the five genes are also widely expressed in the brain. Here I review the functional, physiological and structural features of NCKX proteins that have emerged in the past few years.
View Article and Find Full Text PDFNatural human skin colour is determined both by environmental exposure to ultraviolet light and through inherited genetic variation in a very limited number of genes. Variation of a non-synonymous single-nucleotide polymorphism (nsSNP; rs1426654) in the gene (SLC24A5) encoding the NCKX5 protein is associated with differences in constitutive skin colour in South Asians. The nsSNP encodes the substitution of alanine for threonine at residue 111 (A111T) near a transmembrane region required for exchanger activity, a region which is highly conserved across different species and between NCKX family members.
View Article and Find Full Text PDFNa(+)/Ca(2+)-K(+) exchangers (NCKX), alongside the more widely known Na(+)/Ca(2+) exchangers (NCX), are important players in the cellular Ca(2+) toolkit. But, unlike NCX, much less is known about the physiological roles of NCKX, while emergent evidence indicates that NCKX has highly specialized functions in cells and tissues where it is expressed. As their name implies, there are functional similarities in the properties of the two Ca(2+) exchanger families, but there are specific differences as well.
View Article and Find Full Text PDFChannels (Austin)
October 2008
The most numerous Ca2+ extrusion protein family, in terms of distinct genes, is the SLC24 gene family of Na+/Ca2+-K+ exchangers (NCKX). Five distinct gene products have been identified, mostly from specific animal excitable tissues such as neurons and smooth muscle, but also in places like skin pigment epithelium, signifying that NCKX proteins may play very specific roles, related to Ca2+ homeostasis, in these tissues. However, progress in elucidating the specific physiological roles of NCKX proteins has been slow in coming, largely because of challenges relating to isolating the activity of these proteins in their native tissues.
View Article and Find Full Text PDFA non-synonymous single nucleotide polymorphism in the human SLC24A5 gene is associated with natural human skin color variation. Multiple sequence alignments predict that this gene encodes a member of the potassium-dependent sodium-calcium exchanger family denoted NCKX5. In cultured human epidermal melanocytes we show using affinity-purified antisera that native human NCKX5 runs as a triplet of approximately 43 kDa on SDS-PAGE and is partially localized to the trans-Golgi network.
View Article and Find Full Text PDFAlgorithms suggest that NCKX proteins consist of an N-terminal signal peptide and 11 transmembrane segments divided in two groups of 5 and 6, respectively, separated by a large cytoplasmic loop. This predicted topology places the NCKX alpha-repeats with the same orientation in the plasma membrane. Using thiol-specific drug treatment and site-directed disulfide mapping, we have investigated the orientation of the NCKX2 alpha-repeats.
View Article and Find Full Text PDFNa+/Ca2+-K+ exchangers (NCKX) are plasma membrane transporters that are thought to mainly mediate Ca2+ extrusion (along with K+) at the expense of the Na+ electrochemical gradient. However, because they are bidirectional, most assays have relied on measuring their activity in the reverse (Ca2+ import) mode. Herein we describe a method to control intracellular ionic conditions, and examine the forward (Ca2+ extrusion) mode of exchange of NCKX2.
View Article and Find Full Text PDFThe SLC24 gene family Na+/Ca2+-K+ exchangers (NCKX) are bidirectional plasma membrane transporters whose main function is the extrusion of Ca2+ from the cytosol. In this study, we used human embryonic kidney 293 cells expressing human retinal cone/brain NCKX2 to examine its Na+ affinity and kinetic parameters of Ca2+ transport. With the use of the ionophore gramicidin to control alkali cation concentrations across the plasma membrane, application of high intracellular Na+ promoted large NCKX2-mediated increases in intracellular free Ca2+ in the 15-20 microm range; this also resulted in inactivation of NCKX2 transport, the first description of this novel kinetic state.
View Article and Find Full Text PDFLight-dependent changes in cytoplasmic free Ca(2+) are much faster in the outer segment of cone than rod photoreceptors in the vertebrate retina. In the limit, this rate is determined by the activity of an electrogenic Na(+)/Ca(2+) exchanger located in the outer segment plasma membrane. We investigate the functional properties of the exchanger activity in intact, single cone photoreceptors isolated from striped bass retina.
View Article and Find Full Text PDFThe Na+/Ca2+-K+ exchanger (NCKX) gene products are polytopic membrane proteins that utilize the existing cellular Na+ and K+ gradients to extrude cytoplasmic Ca2+. NCKX proteins are made up of two clusters of hydrophobic segments, both thought to consist of five putative membrane-spanning alpha-helices, and separated by a large cytoplasmic loop. The two most conserved regions within the NCKX sequence are known as the alpha1 and alpha2 repeats, and are found within the first and second set of transmembrane domains, respectively.
View Article and Find Full Text PDFThe Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport.
View Article and Find Full Text PDFThe Na(+)/Ca(2+)-K(+) exchanger (NCKX) extrudes Ca(2+) from cells utilizing both the inward Na(+) gradient and the outward K(+) gradient. NCKX is thought to operate by a consecutive mechanism in which a cation binding pocket accommodates both Ca(2+) and K(+) and alternates between inward and outward facing conformations. Here we developed a simple fluorometric method to analyze changes in K(+) and Ca(2+) dependences of mutant NCKX2 proteins in which candidate residues within membrane-spanning domains were substituted.
View Article and Find Full Text PDFCysteine residues play an important role in many proteins, either in enzymatic activity or by mediating inter- or intramolecular interactions. The Na(+)/Ca(2+)-K(+) exchanger plays a critical role in Ca(2+) homeostasis in retinal rod (NCKX1) and cone (NCKX2) photoreceptors by extruding Ca(2+) that enters rod and cone cells via the cGMP-gated channels. NCKX1 and NCKX2 contain five highly conserved cysteine residues.
View Article and Find Full Text PDFThe Na+/Ca2+ -K+ exchanger (NCKX) utilizes the inward Na+ gradient and the outward K+ gradient to promote Ca2+ extrusion from cells. Here, we have characterized a second NCKX from Drosophila. Based on its chromosomal location (X chromosome) we have named it Ncxk-x.
View Article and Find Full Text PDFNa(+)/Ca(2+)-K(+) exchange (NCKX) was first discovered in the outer segments of vertebrate rod photoreceptors (ROS), where it is the only mechanism for extruding the Ca(2+) that enters ROS via the light-sensitive and cGMP-gated channels. ROS NCKX1 is the only NCKX gene family member studied extensively in situ. ROS NCKX1 cDNAs have been cloned subsequently from a number of species including man and shown to be the first member of a new gene family ( SLCA24).
View Article and Find Full Text PDFRetinal rod and cone photoreceptors express two distinct Na(+)/Ca(2+)-K(+) exchanger (NCKX) gene products. Both the rod NCKX1 and cone NCKX2 are polytopic membrane proteins thought to contain a putative cleavable signal peptide. A cleavable signal peptide is unusual for plasma membrane proteins; moreover, predictive algorithms suggest the presence of a cleavable signal peptide for all rod NCKX1 proteins and a noncleavable signal anchor for the cone NCKX2 proteins.
View Article and Find Full Text PDFProper control of intracellular free Ca(2+) is thought to involve subsets of proteins that co-localize to mediate coordinated Ca(2+) entry and Ca(2+) extrusion. The outer segments of vertebrate rod and cone photoreceptors present one example: Ca(2+) influx is exclusively mediated via cGMP-gated channels (CNG), whereas the Na(+)/Ca(2+)-K(+) exchanger (NCKX) is the only Ca(2+) extrusion protein present. In situ, a rod NCKX homodimer and a CNG heterotetramer are thought to be part of a single protein complex.
View Article and Find Full Text PDF