J Respir Biol Transl Med
September 2024
Chin Med J Pulm Crit Care Med
June 2024
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2024
The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury.
View Article and Find Full Text PDFJ Respir Biol Transl Med
June 2024
The molecular mechanisms that regulate progressive pulmonary fibrosis remain poorly understood. Type 2 alveolar epithelial cells (AEC2s) function as adult stem cells in the lung. We previously showed that there is a loss of AEC2s and a failure of AEC2 renewal in the lungs of idiopathic pulmonary fibrosis (IPF) patients.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
August 2024
Idiopathic pulmonary fibrosis is a fatal and progressive disease with limited treatment options. We sought to assess the efficacy and safety of CC-90001, an oral inhibitor of c-Jun N-terminal kinase 1, in patients with idiopathic pulmonary fibrosis. In a Phase 2, randomized (1:1:1), double-blind, placebo-controlled study (ClinicalTrials.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2023
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention.
View Article and Find Full Text PDFAging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses.
View Article and Find Full Text PDFAging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
July 2023
Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues.
View Article and Find Full Text PDFProgressive tissue fibrosis, including idiopathic pulmonary fibrosis (IPF), is characterized by excessive recruitment of fibroblasts to sites of tissue injury and unremitting extracellular matrix deposition associated with severe morbidity and mortality. However, the molecular mechanisms that control progressive IPF have yet to be fully determined. Previous studies suggested that invasive fibroblasts drive disease progression in IPF.
View Article and Find Full Text PDFType 2 alveolar epithelial cells (AEC2s) function as progenitor cells in the lung. We have shown previously that failure of AEC2 regeneration results in progressive lung fibrosis in mice and is a cardinal feature of idiopathic pulmonary fibrosis (IPF). In this study, we identified deficiency of a specific zinc transporter, SLC39A8 (ZIP8), in AEC2s from both IPF lungs and lungs of old mice.
View Article and Find Full Text PDFMMWR Morb Mortal Wkly Rep
February 2022
In mid-December 2021, the B.1.1.
View Article and Find Full Text PDFRecent advances in single-cell RNA sequencing (scRNA-seq) and epithelium lineage labeling have yielded identification of multiple abnormal epithelial progenitor populations during alveolar type 2 (ATII) cell differentiation into alveolar type 1 (ATI) cells during regenerative lung post-fibrotic injury. These abnormal cells include basaloid/basal-like cells, ATII transition cells, and persistent epithelial progenitors (PEPs). These cells occurred and accumulated during the regeneration of distal airway and alveoli in response to both chronic and acute pulmonary injury.
View Article and Find Full Text PDFIntroduction: Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production.
View Article and Find Full Text PDFBackground: Chronic lung allograft dysfunction (CLAD) phenotype determines prognosis and may have therapeutic implications. Despite the clarity achieved by recent consensus statement definitions, their reliance on radiologic interpretation introduces subjectivity. The Center for Computer Vision and Imaging Biomarkers at the University of California, Los Angeles (UCLA) has established protocols for chest high-resolution computed tomography (HRCT)-based computer-aided quantification of both interstitial disease and air-trapping.
View Article and Find Full Text PDFDespite the common detection of non-donor specific anti-HLA antibodies (non-DSAs) after lung transplantation, their clinical significance remains unclear. In this retrospective single-center cohort study of 325 lung transplant recipients, we evaluated the association between donor-specific HLA antibodies (DSAs) and non-DSAs with subsequent CLAD development. DSAs were detected in 30% of recipients and were associated with increased CLAD risk, with higher HRs for both de novo and high MFI (>5000) DSAs.
View Article and Find Full Text PDF