There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.
View Article and Find Full Text PDFBackground: Biomass valorization has been suggested as a sustainable alternative to petroleum-based energy and commodities. In this context, the copper radical oxidases (CROs) from Auxiliary Activity Family 5/Subfamily 2 (AA5_2) are attractive biocatalysts for the selective oxidation of primary alcohols to aldehydes. Originally defined by the archetypal galactose 6-oxidase from Fusarium graminearum, fungal AA5_2 members have recently been shown to comprise a wide range of specificities for aromatic, aliphatic and furan-based alcohols.
View Article and Find Full Text PDFGuanine-rich single-stranded DNAs and RNAs that fold into G-quadruplexes (GQs) are known to complex tightly with Fe-heme and Fe-heme (hemin), ubiquitous cellular cofactors. Heme-GQ (DNA) complexes, known as heme·DNAzymes, are able to utilize hydrogen peroxide as an oxidant to vigorously catalyze a variety of one-electron (peroxidase) and two-electron (peroxygenase) oxidation reactions. Herein, we show that complexes of Fe-heme with GQs also robustly catalyze a mechanistically distinct reaction, carbene transfer to an alkene substrate.
View Article and Find Full Text PDF