Aboveground biomass density (AGBD) estimates from Earth Observation (EO) can be presented with the consistency standards mandated by United Nations Framework Convention on Climate Change (UNFCCC). This article delivers AGBD estimates, in the format of Intergovernmental Panel on Climate Change (IPCC) Tier 1 values for natural forests, sourced from National Aeronautics and Space Administration's (NASA's) Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud and land Elevation Satellite (ICESat-2), and European Space Agency's (ESA's) Climate Change Initiative (CCI). It also provides the underlying classification used by the IPCC as geospatial layers, delineating global forests by ecozones, continents and status (primary, young (≤20 years) and old secondary (>20 years)).
View Article and Find Full Text PDFHigh northern latitude changes with Arctic amplification across a latitudinal forest gradient suggest a shift towards an increased presence of trees and shrubs. The persistence of change may depend on the future scenarios of climate and on the current state, and site history, of forest structure. Here, we explore the persistence of a gradient-based shift in the boreal by connecting current forest patterns to recent tree cover trends and future modeled estimates of canopy height through 2100.
View Article and Find Full Text PDFMangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m).
View Article and Find Full Text PDFStereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; < 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereopairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests.
View Article and Find Full Text PDFIn the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g.
View Article and Find Full Text PDFIn 2001, the New Jersey Department of Environmental Protection (NJDEP) adopted rules specifically protecting vernal pool habitat for the first time. Vernal pools are small isolated temporary bodies of water that provide critical breeding habitat for a number of amphibian species. To implement these rules and ultimately afford vernal pools protection, the NJDEP first needed to assemble a statewide database of vernal pool locations.
View Article and Find Full Text PDF