High-grade serous ovarian cancer (HGSOC) originates in the fallopian tube epithelium and is characterized by ubiquitous TP53 mutation and extensive chromosomal instability (CIN). However, direct causes of CIN, such as mutations in DNA replication and mitosis genes, are rare in HGSOC. We therefore asked whether oncogenic mutations that are common in HGSOC can indirectly drive CIN in non-transformed human fallopian tube epithelial cells.
View Article and Find Full Text PDFDeviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance.
View Article and Find Full Text PDFThe anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets substrates for degradation to promote mitotic progression. Here, we show that the DNA damage response protein 53BP1 contains conserved KEN boxes that are required for APC/C-dependent degradation in early mitosis. Mutation of the 53BP1 KEN boxes stabilized the protein and extended mitotic duration, whereas 53BP1 knockdown resulted in a shorter and delayed mitosis.
View Article and Find Full Text PDF