Testing for developmental toxicity is an integral part of chemical regulations. The applied tests are laborious and costly and require a large number of vertebrate test animals. To reduce animal numbers and associated costs, the zebrafish embryo was proposed as an alternative model.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish.
Objectives: The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish.
Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential.
View Article and Find Full Text PDFA crucial component of a substance registration and regulation is the evaluation of human prenatal developmental toxicity. Current toxicological tests are based on mammalian models, but these are costly, time consuming and may pose ethical concerns. The zebrafish embryo has evolved as a promising alternative model to study developmental toxicity.
View Article and Find Full Text PDF