Publications by authors named "Paul May"

Aboveground biomass density (AGBD) estimates from Earth Observation (EO) can be presented with the consistency standards mandated by United Nations Framework Convention on Climate Change (UNFCCC). This article delivers AGBD estimates, in the format of Intergovernmental Panel on Climate Change (IPCC) Tier 1 values for natural forests, sourced from National Aeronautics and Space Administration's (NASA's) Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud and land Elevation Satellite (ICESat-2), and European Space Agency's (ESA's) Climate Change Initiative (CCI). It also provides the underlying classification used by the IPCC as geospatial layers, delineating global forests by ecozones, continents and status (primary, young (≤20 years) and old secondary (>20 years)).

View Article and Find Full Text PDF

Diamond with negative electron affinity (NEA) and low work function surfaces are suggested as a suitable material for electron-generation applications in vacuum, in particular, as the emitter electrode in thermionic energy converters. Such NEA surfaces can be fabricated by evaporating and then annealing submonolayers of a suitable metal in vacuo onto bare or oxidized diamond. Among the metals studied, scandium termination of bare diamond (100) and (111) surfaces is recently reported to give the largest NEA values reported to date for a metal-diamond system, as well as being thermally stable to 900 °C.

View Article and Find Full Text PDF

It is presumed that the unusual central location of mesencephalic trigeminal neurons is a specialization that allows them to receive synaptic input. However, relatively few synaptic terminals were observed on the somata of mesencephalic trigeminal neurons in macaque monkeys via electron microscopy. This leaves the question of dendritic synaptic terminals open.

View Article and Find Full Text PDF

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation.

View Article and Find Full Text PDF

Primary afferents originating from the mesencephalic trigeminal nucleus provide the main source of proprioceptive information guiding mastication, and thus represent an important component of this critical function. Unlike those of other primary afferents, their cell bodies lie within the central nervous system. It is believed that this unusual central location allows them to be regulated by synaptic input.

View Article and Find Full Text PDF

When movements become inaccurate, the resultant error induces motor adaptation to improve accuracy. This error-based motor learning is regarded as a cerebellar function. However, the influence of the other brain areas on adaptation is poorly understood.

View Article and Find Full Text PDF

Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail.

View Article and Find Full Text PDF

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation.

View Article and Find Full Text PDF

The emergence of superconductivity in doped insulators such as cuprates and pnictides coincides with their doping-driven insulator-metal transitions. Above the critical doping threshold, a metallic state sets in at high temperatures, while superconductivity sets in at low temperatures. An unanswered question is whether the formation of Cooper pairsin a well-established metal will inevitably transform the host material into a superconductor, as manifested by a resistance drop.

View Article and Find Full Text PDF

Historically, the central mesencephalic reticular formation has been regarded as a purely horizontal gaze center based on the fact that electrical stimulation of this region produces horizontal saccades, it provides monosynaptic input to medial rectus motoneurons, and cells recorded in this region often display a peak in firing when horizontal saccades are made. We tested the proposition that the central mesencephalic reticular formation is purely a horizontal gaze center by examining whether this region also supplies terminals to superior rectus and levator palpebrae superioris motoneurons, both of which fire when making vertical eye movements. The experiments were carried out using dual tracer techniques at the light and electron microscopic level in macaque monkeys.

View Article and Find Full Text PDF

Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance.

Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport.

View Article and Find Full Text PDF

To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of or interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies.

View Article and Find Full Text PDF

For normal viewing, the eyes are held open by the tonic actions of the levator palpebrae superioris (levator) muscle raising the upper eyelid. This activity is interrupted during blinks, when the eyelid sweeps down to spread the tear film or protect the cornea. We examined the circuit connecting the principal trigeminal nucleus to the levator motoneurons by use of both anterograde and retrograde tracers in macaque monkeys.

View Article and Find Full Text PDF

Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior.

View Article and Find Full Text PDF

The basal ganglia have long been considered crucial for associative learning, but whether they also are involved in another type of learning, error-based motor learning, is not clear. Error-based learning has been considered the province of the cerebellum. However, learning to use a robotic arm and saccade adaptation, which use error-based learning, are facilitated by motivation, which is a function of the basal ganglia.

View Article and Find Full Text PDF

The trigeminal blink reflex plays an important role in protecting the corneal surface from damage and preserving visual function in an unpredictable environment. The closing phase of the human reflex, produced by activation of the orbicularis oculi (ObOc) muscles, consists of an initial, small, ipsilateral R component, followed by a larger, bilateral R component. We investigated the circuitry that underlies this reflex in macaque (Macaca fascicularis and Macaca mulatta) monkeys by the use of single and dual tracer methods.

View Article and Find Full Text PDF

A projection by the superior colliculus to the supraoculomotor area (SOA) located dorsal to the oculomotor complex was first described in 1978. This projection's targets have yet to be identified, although the initial study suggested that vertical gaze motoneuron dendrites might receive this input. Defining the tectal targets is complicated by the fact the SOA contains a number of different cell populations.

View Article and Find Full Text PDF

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements.

View Article and Find Full Text PDF

The ventral posterior medial nucleus (VPM) is amandatory relay for orofacial sensory information targeting the primary somatosensory cortex. We characterized the morphology of VPM axons arising in the principal trigeminal sensory nucleus (pV) through injections of biotinylated dextran amine (BDA) placed in pV of and monkeys. Labeled terminals formed a patchy bilateral distribution.

View Article and Find Full Text PDF

Background: Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs.

View Article and Find Full Text PDF

Purpose: In frontal-eyed mammals such as primates, eye movements are coordinated so that the lines of sight are directed at targets in a manner that adjusts for target distance. The lens of each eye must also be adjusted with respect to target distance to maintain precise focus. Whether the systems for controlling eye movements are monocularly or binocularly organized is currently a point of contention.

View Article and Find Full Text PDF

The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen is a common element in both natural and lab-grown diamonds, affecting their properties based on the type and quantity of nitrogen defects present.
  • Recent advancements in diamond synthesis methods, specifically high pressure high temperature (HPHT) and chemical vapor deposition (CVD), allow for precise control over nitrogen incorporation and subsequent processing of diamonds for desired characteristics.
  • The study of nitrogen-related defects, especially the negatively charged nitrogen-vacancy (NV) defect, is particularly promising, as it opens up new applications in fields like quantum technologies, nanoscale magnetometry, and biosensing.
View Article and Find Full Text PDF

The motor outflow for the pupillary light reflex originates in the preganglionic motoneuron subdivision of the Edinger-Westphal nucleus (EWpg), which also mediates lens accommodation. Despite their importance for vision, the morphology, ultrastructure and luminance-related inputs of these motoneurons have not been fully described in primates. In macaque monkeys, we labeled EWpg motoneurons from ciliary ganglion and orbital injections.

View Article and Find Full Text PDF