Publications by authors named "Paul Matthay"

During growth, cells need to synthesize and expand their envelope, a process that requires careful regulation. Here, we show that the GTPase ObgE of E. coli contributes to the regulation of lipopolysaccharide (LPS) synthesis, an essential component of the Gram-negative outer membrane.

View Article and Find Full Text PDF

Effective treatment of bacterial infections proves increasingly challenging due to the emergence of bacterial variants that endure antibiotic exposure. Antibiotic resistance and persistence have been identified as two major bacterial survival mechanisms, and several studies have shown a rapid and strong selection of resistance or persistence mutants under repeated drug treatment. Yet, little is known about the impact of the environmental conditions on resistance and persistence evolution and the potential interplay between both phenotypes.

View Article and Find Full Text PDF

Persisters constitute a population of temporarily antibiotic-tolerant variants in an isogenic bacterial population and are considered an important cause of relapsing infections. It is currently unclear how cellular damage inflicted by antibiotic action is reversed upon persister state exit and how this relates to antibiotic resistance development at the molecular level. We demonstrate that persisters, upon fluoroquinolone treatment, accumulate oxidative DNA damage, which is repaired through nucleotide excision repair.

View Article and Find Full Text PDF

Decades of research into bacterial persistence has been unable to fully characterize this antibiotic-tolerant phenotype, thereby hampering the development of therapies effective against chronic infections. Although some active persister mechanisms have been identified, the prevailing view is that cells become persistent because they enter a dormant state. We therefore characterized starvation-induced dormancy in Escherichia coli.

View Article and Find Full Text PDF

Bacterial persistence is a potential cause of antibiotic therapy failure. Antibiotic-tolerant persisters originate from phenotypic differentiation within a susceptible population, occurring with a frequency that can be altered by mutations. Recent studies have proven that persistence is a highly evolvable trait and, consequently, an important evolutionary strategy of bacterial populations to adapt to high-dose antibiotic therapy.

View Article and Find Full Text PDF