For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a research model, for example aiding in the study of ion transport through tight epithelia, where it has served as a model for the vertebrate distal renal tubule and mammalian epithelia. However, it has rarely been considered in comparative studies involving human skin.
View Article and Find Full Text PDFFish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin.
View Article and Find Full Text PDFUnderstanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis-statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [1947] Biochem Biophys Acta 1:549-562) seminal X-ray diffraction study that revealed two distinct keratins, beta- and alpha-, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding.
View Article and Find Full Text PDFA review of major studies of tetrapod skin development since the 1870s illustrates how knowledge of structure and mechanism progressed through phases emphasizing Natural History, morphology, endocrinology, and tissue manipulation prior to the prevailing "molecular era." Each successive phase of investigation, while suffering from its own limitations and constraints, has produced conceptual advances. At various times, different systems in various organisms have been research models of choice for practical and/or technical reasons.
View Article and Find Full Text PDFThe expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers.
View Article and Find Full Text PDFStudy of the histology, histochemistry, and fine structure of caudal epidermal regeneration in Sphenodon punctatus through restoration of a scaled form reveals that the processes involved resemble those known in lizards. Following establishment of a wound epithelium (WE), subjacent scale neogenesis involves epidermal downgrowths into the dermis. Although the process is extremely slow, and most new scales do not overlap, their epidermal coverings reestablish epidermal generation (EG) formation.
View Article and Find Full Text PDFHistochemical and TEM analysis of the epidermis of Sphenodon punctatus confirms previous histological studies showing that skin-shedding in this relic species involves the periodic production and loss of epidermal generations, as has been well documented in the related Squamata. The generations are basically similar to those that have been described in the latter, and their formation involves a cyclic alternation between beta- and alpha-keratogenesis. The six differences from the previously described squamate condition revealed by this study include: 1) the absence of a well-defined shedding complex; 2) the persistence of plasma membranes throughout the mature beta-layer, including the oberhautchen; 3) the concomitant presence of lipogenic lamellar bodies and PAS-positive mucous granules in most presumptive alpha-keratinizing cells; 4) the presence of the secreted contents of these organelles in the intercellular domains of the three derived tissues, the homologues of the squamate mesos, alpha-, and lacunar cells; 5) the paucity of lamellated lipid deposits in such domains; 6) the presence of keratohyalin-like granules (KHLG) in the presumptive lacunar, clear, and oberhautchen cells.
View Article and Find Full Text PDF