Highly flexible, electrically conductive freestanding graphene membranes hold great promise for vibration-based applications. This study focuses on their integration into mainstream semiconductor manufacturing methods. We designed a two-mask lithography process that creates an array of freestanding graphene-based variable capacitors on 100 mm silicon wafers.
View Article and Find Full Text PDFElectrically conductive, highly flexible graphene membranes hold great promise for harvesting energy from ambient vibrations. For this study, we built numerous three-dimensional graphene ripples, with each featuring a different amount of compression, and performed molecular dynamics simulations at elevated temperatures. These ripples have a convex cosine shape, then spontaneously invert their curvature to concave.
View Article and Find Full Text PDFFreestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations.
View Article and Find Full Text PDF