Bacterial binding to host receptors underlies both commensalism and pathogenesis. Many streptococci adhere to protein-attached carbohydrates expressed on cell surfaces using Siglec-like binding regions (SLBRs). The precise glycan repertoire recognized may dictate whether the organism is a strict commensal versus a pathogen.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S.
View Article and Find Full Text PDFStreptococcus oralis is a commensal viridans group streptococcus of the human oral cavity and a frequent cause of endovascular infection. Here, we report the complete whole-genome sequence of S. oralis strain SF100, which was originally isolated from the blood of a patient with infective endocarditis.
View Article and Find Full Text PDFMucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells.
View Article and Find Full Text PDFExpression of bacteriophage lysin by Streptococcus oralis strain SF100 is thought to be important for the pathogenesis of infective endocarditis, due to its ability to mediate bacterial binding to fibrinogen. To better define the lysin binding site on fibrinogen Aα, and to investigate the impact of binding on fibrinolysis, we examined the interaction of lysin with a series of recombinant fibrinogen Aα variants. These studies revealed that lysin binds the C-terminal region of fibrinogen Aα spanned by amino acid residues 534 to 610, with an affinity of equilibrium dissociation constant () of 3.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB).
View Article and Find Full Text PDFViridans group streptococci (VGS), especially the subgroup, are pivotal pathogens in a variety of invasive endovascular infections, including "toxic shock" in neutropenic cancer patients and infective endocarditis (IE). Previously, we showed that the serial in vitro passage of strains in sublethal daptomycin (DAP) resulted in rapid, high-level and stable DAP-resistance (DAP-R), which is accompanied by distinct changes in several genotypic and phenotypic signatures: (1) the disappearance of two key membrane phospholipids, phosphatidylglycerol (PG) and cardiolipin (CL); (2) increased membrane fluidity; (3) increased positive surface charge; (4) single nucleotide polymorphisms (SNPs) in two loci involved in CL biosynthesis (); and (5) DAP hyperaccumulation. The current study examined these same metrics following in vitro serial DAP passages of a separate well-characterized bloodstream isolate (SF100).
View Article and Find Full Text PDFialic acid-binding mmunolobulin-like tins (Siglec)-like domains of streptococcal serine-rich repeat (SRR) adhesins recognize sialylated glycans on human salivary, platelet, and plasma glycoproteins via a YTRY sequence motif. The SRR adhesin from strain SK1 has tandem sialoglycan-binding domains and has previously been shown to bind sialoglycans with high affinity. However, both domains contain substitutions within the canonical YTRY motif, making it unclear how they interact with host receptors.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain.
View Article and Find Full Text PDFThe structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates.
View Article and Find Full Text PDFIn addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2019
The viridans group streptococci (VGS) are a heterogeneous group of organisms which are important components of the normal human oral flora. Among the VGS, the subgroup is one of the most common causes of infective endocarditis (IE). Daptomycin (DAP) is a potential alternative therapeutic option for invasive infections, given high rates of β-lactam resistance and vancomycin tolerance in such strains.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria are large, cell wall-anchored adhesins that mediate binding to many host cells and proteins and are associated with bacterial virulence. SRR glycoproteins are exported to the cell surface by the accessory Sec (aSec) system comprising SecA2, SecY2, and 3-5 additional proteins (Asp1 to Asp5) that are required for substrate export. These adhesins typically have a 90-amino acid-long signal peptide containing an elongated N-region and a hydrophobic core.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2019
We investigated the ability of several recent clinical viridans group streptococci (VGS) bloodstream isolates (/ subgroup) from daptomycin (DAP)-naive patients to develop DAP resistance All strains rapidly developed high-level and stable DAP resistance. Substitutions in two enzymes involved in the cardiolipin biosynthesis pathway were identified, i.e.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are typically found among the normal oral microbiota but can also cause infective endocarditis. These organisms express cell surface serine-rich repeat adhesins containing "Siglec-like" binding regions (SLBRs) that mediate attachment to α2-3-linked sialic acids on human glycoproteins. Two known receptors for the Siglec-like adhesins are the salivary mucin MG2/MUC7 and platelet GPIbα, and the interaction of streptococci with these targets may contribute to oral colonization and endocarditis, respectively.
View Article and Find Full Text PDFThe binding of bacteria to platelets is thought to be a central event in the pathogenesis of infective endocarditis. The serine-rich repeat (SRR) glycoproteins of viridans group streptococci have been shown to mediate platelet binding and to contribute to virulence in animal models. However, it is not known whether SRR adhesins can mediate streptococcal binding under the high fluidic shear stress conditions present on the endocardial surface.
View Article and Find Full Text PDFMany pathogenic bacteria, including , possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is -glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the adhesin GspB is sequentially -glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach -acetylglucosamine and glucose to Ser/Thr residues.
View Article and Find Full Text PDFStreptococcus agalactiae (group B streptococcus [GBS]) is a leading cause of invasive diseases in neonates and severe infections in elderly individuals. GBS serine-rich repeat glycoprotein 1 (Srr1) acts as a critical virulence factor by facilitating GBS invasion into the central nervous system through interaction with the fibrinogen Aα chain. This study revealed that srr1 is highly conserved, with 86.
View Article and Find Full Text PDFThe serine-rich repeat (SRR) glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec) system.
View Article and Find Full Text PDFis an important pathogen, causing life-threatening infections such as endocarditis and severe sepsis in immunocompromised patients. The β-lactam antibiotics are the usual therapy of choice for this organism, but their effectiveness is threatened by the frequent emergence of resistance. The lipopeptide daptomycin (DAP) has been suggested for therapy against such resistant strains due to its bactericidal activity and demonstrated efficacy against other Gram-positive pathogens.
View Article and Find Full Text PDFStreptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence.
View Article and Find Full Text PDFSerine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity.
View Article and Find Full Text PDFO-glycosylation of Ser and Thr residues is an important process in all organisms, which is only poorly understood. Such modification is required for the export and function of adhesin proteins that mediate the attachment of pathogenic Gram-positive bacteria to host cells. Here, we have analyzed the mechanism by which the cytosolic O-glycosyltransferase GtfA/B of Streptococcus gordonii modifies the Ser/Thr-rich repeats of adhesin.
View Article and Find Full Text PDFStreptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S.
View Article and Find Full Text PDFDamaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens.
View Article and Find Full Text PDF