Publications by authors named "Paul M Schindler"

Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems, and are in the process of being developed into a standard toolbox for quantum simulation. An outstanding challenge that leaves this toolbox incomplete is the manipulation of the states dressed by strong periodic drives. The state-of-the-art in Floquet control is the adiabatic change of parameters.

View Article and Find Full Text PDF

We present an Ansatz for the ground states of the quantum Sherrington-Kirkpatrick model, a paradigmatic model for quantum spin glasses. Our Ansatz, based on the concept of generalized coherent states, very well captures the fundamental aspects of the model, including the ground state energy and the position of the spin glass phase transition. It further enables us to study some previously unexplored features, such as the nonvanishing longitudinal field regime and the entanglement structure of the ground states.

View Article and Find Full Text PDF