Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations.
View Article and Find Full Text PDFWe investigated relationships between light availability, diel acid fluctuation, and resource storage in the arborescent cactus Opuntia excelsa growing in western Mexico. We compared canopy and understory individuals from a deciduous forest as well as open-grown plants of the same approximate size as those in the understory. During the wet season light availability and daily fluctuations in titratable acidity (an index of carbon uptake) were lower in the understory than in unshaded habitats.
View Article and Find Full Text PDF