Publications by authors named "Paul M McNamara"

Correlation mapping optical coherence tomography (cmOCT) is a powerful technique for the imaging of skin microvessels structure, based on the discrimination of the static and dynamic regions of the tissue. Although the suitability of cmOCT to visualize the microcirculation has been proved in humans and animal models, less evidence has been provided about its application to examine functional dynamics. Therefore, the goal of this research was validating the cmOCT method for the investigation into microvascular function and vasomotion.

View Article and Find Full Text PDF

A technique based on multiple reference optical coherence tomography (MR-OCT) is proposed for simultaneous imaging at multiple depths. The technique has been validated by imaging a reference sample and a fingerprint in-vivo. The principle of scanning multiple selected layers is shown by imaging a partial fingerprint with 200×200×200 voxels of 3×3×0.

View Article and Find Full Text PDF

Multiple reference optical coherence tomography (MR-OCT) is a technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short scan range of a miniature voice coil motor on which the scanning mirror is mounted.

View Article and Find Full Text PDF

Background And Objectives: Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source.

View Article and Find Full Text PDF

A full-field optical coherence tomography (OCT) system has been developed for the purpose of performing nonscanning en face flow imaging. The light source is centered at 840 nm with a bandwidth of 50 nm resulting in an axial resolution of 8 μm in air. Microscope objectives with a numerical aperture of 0.

View Article and Find Full Text PDF

TiVi technology presents a high resolution, low speed methodology for imaging microcirculation. Recently, the TiVi system was adapted to produce a high speed system capable of analysing dynamic responses from human tissues at a frame rate of 30 frames per second. We present results based on this system by investigating dynamic responses such as arterial pulsations both from a controlled flow model and in vivo tissue sites.

View Article and Find Full Text PDF

Tissue Viability (TiVi) imaging is a promising new technology for the assessment of microcirculation in the upper human dermis. Although the technique is easily implemented and develops large amounts of observational data, its role in the clinical workplace awaits the development of standardised protocols required for routine clinical practice. The present study investigates the use of TiVi technology in a human, in vivo, localized, skin blood flow occlusion protocol.

View Article and Find Full Text PDF