Publications by authors named "Paul M Magyar"

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys.

View Article and Find Full Text PDF

Nitrous oxide (NO) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of NO occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, NO mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (N/N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria.

View Article and Find Full Text PDF

Rationale: Bulk and position-specific stable isotope characterization of nitrous oxide represents one of the most powerful tools for identifying its environmental sources and sinks. Constraining (14) N(15) N(18) O and (15) N(14) N(18) O will add two new dimensions to our ability to uniquely fingerprint N2 O sources.

Methods: We describe a technique to measure six singly and doubly substituted isotopic variants of N2 O, constraining the values of δ(15) N, δ(18) O, ∆(17) O, (15) N site preference, and the clumped isotopomers (14) N(15) N(18) O and (15) N(14) N(18) O.

View Article and Find Full Text PDF