Publications by authors named "Paul M Lemieux"

The destruction of per- and polyfluoroalkyl substances (PFAS) is critical to ensure effective remediation of PFAS contaminated matrices. The destruction of hazardous chemicals within incinerators and other thermal treatment processes has historically been determined by calculating the destruction efficiency (DE) or the destruction and removal efficiency (DRE). While high DEs, >99.

View Article and Find Full Text PDF

A combustion model, originally developed to simulate the destruction of chemical warfare agents, was modified to include C-C fluorinated organic reactions and kinetics compiled by the National Institute of Standards and Technology (NIST). A simplified plug flow reactor version of this model was used to predict the destruction efficiency (DE) and formation of products of incomplete combustion (PICs) for three C and C per- and poly-fluorinated alkyl substances (PFAS) (CF, CHF, and CF) and compare predicted values to Fourier Transform Infrared spectroscopy (FTIR)-based measurements made from a pilot-scale EPA research combustor (40-64 kW, natural gas-fired, 20% excess air). PFAS were introduced through the flame, and at post-flame locations along a time-temperature profile allowing for simulation of direct flame and non-flame injection, and examination of the sensitivity of PFAS destruction on temperature and free radical flame chemistry.

View Article and Find Full Text PDF

The release of persistent per- and polyfluoroalkyl substances (PFAS) into the environment is a major concern for the United States Environmental Protection Agency (U.S. EPA).

View Article and Find Full Text PDF

The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.

View Article and Find Full Text PDF

Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris.

View Article and Find Full Text PDF

The uncontrolled burning of household waste in barrels has recently been implicated as a major source of airborne emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). A detailed, systematic study to understand the variables affecting emissions of PCDD/Fs from burn barrels was performed. The waste composition, fullness of the barrel, and the combustion conditions within the barrel all contribute significantly to determining the emissions of PCDD/Fs from burn barrels.

View Article and Find Full Text PDF

Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CC14) and dichloromethane (CH2C12). Species were measured using an on-line gas chromatograph (GC) system capable of measuring concentrations of eight species of volatile organic compounds (VOCs) in a near-realtime fashion. Samples were taken at several points within the SCC, to generate species profiles with respect to system residence time.

View Article and Find Full Text PDF