Publications by authors named "Paul M Koenraad"

We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal-organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges.

View Article and Find Full Text PDF

We investigated metal-organic vapor phase epitaxy grown droplet epitaxy (DE) and Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) by cross-sectional scanning tunneling microscopy (X-STM). We present an atomic-scale comparison of structural characteristics of QDs grown by both growth methods proving that the DE yields more uniform and shape-symmetric QDs. Both DE and SKQDs are found to be truncated pyramid-shaped with a large and sharp top facet.

View Article and Find Full Text PDF

The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism.

View Article and Find Full Text PDF

We investigated metal-organic vapor phase epitaxy grown (InGa)(AsSb)/GaAs/GaP Stranski-Krastanov quantum dots (QDs) with potential applications in QD-Flash memories by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). The combination of X-STM and APT is a very powerful approach to study semiconductor heterostructures with atomic resolution, which provides detailed structural and compositional information on the system. The rather small QDs are found to be of truncated pyramid shape with a very small top facet and occur in our sample with a very high density of ∼4 × 10 cm.

View Article and Find Full Text PDF
Article Synopsis
  • - Understanding the growth mechanism of quantum dots (QDs) is crucial for enhancing QD-based optoelectronic devices, as their size, shape, composition, and density significantly affect their properties.
  • - The article focuses on atomic-scale characterization methods like cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT) to study strain-free GaAs/AlGaAs and strained InAs/InP QDs grown using droplet epitaxy.
  • - The review highlights the impact of different growth conditions on dot morphology and composition, and it showcases techniques such as the flushing method to improve control over QD height, alongside detailed structural analyses from etch pits in both QD systems.
View Article and Find Full Text PDF

The interface between topological and normal insulators hosts metallic states that appear due to the change in band topology. While topological states at a surface, i.e.

View Article and Find Full Text PDF

The distribution of magnetic impurities (Mn) across a GaAs/Zn(Mn)Se heterovalent interface is investigated combining three experimental techniques: Cross-Section Scanning Tunnel Microscopy (X-STM), Atom Probe Tomography (APT), and Secondary Ions Mass Spectroscopy (SIMS). This unique combination allowed us to probe the Mn distribution with excellent sensitivity and sub-nanometer resolution. Our results show that the diffusion of Mn impurities in GaAs is strongly suppressed; conversely, Mn atoms are subject to a substantial redistribution in the ZnSe layer, which is affected by the growth conditions and the presence of an annealing step.

View Article and Find Full Text PDF

We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas.

View Article and Find Full Text PDF

A great improvement in valence change memory performance has been recently achieved by adding another metallic layer to the simple metal-insulator-metal (MIM) structure. This metal layer is often referred to as oxygen exchange layer (OEL) and is introduced between one of the electrodes and the oxide. The OEL is believed to induce a distributed reservoir of defects at the metal-insulator interface thus providing an unlimited availability of building blocks for the conductive filament (CF).

View Article and Find Full Text PDF

The atomic layer deposition (ALD) process of hydrogen-doped indium oxide (InO:H) using indium cyclopentadienyl (InCp) and both O and HO as precursors is highly promising for the preparation of transparent conductive oxides. It yields a high growth per cycle (>0.1 nm), is viable at temperatures as low as 100 °C, and provides a record optoelectronic quality after postdeposition crystallization of the films ( ACS Appl.

View Article and Find Full Text PDF

In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk AlInAs (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band k·p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescence spectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 μeV.

View Article and Find Full Text PDF

Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further.

View Article and Find Full Text PDF

To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose.

View Article and Find Full Text PDF

Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called locking layers, to limit dopant segregation in highly phosphorus doped silicon monolayers. We present secondary ion mass spectroscopy and atom probe tomography measurements that demonstrate the effectiveness of locking layers in suppressing P segregation.

View Article and Find Full Text PDF

The sensitive dependence of a semiconductor's electronic, optical and magnetic properties on dopants has provided an extensive range of tunable phenomena to explore and apply to devices. Recently it has become possible to move past the tunable properties of an ensemble of dopants to identify the effects of a solitary dopant on commercial device performance as well as locally on the fundamental properties of a semiconductor. New applications that require the discrete character of a single dopant, such as single-spin devices in the area of quantum information or single-dopant transistors, demand a further focus on the properties of a specific dopant.

View Article and Find Full Text PDF