The oyster toadfish (Opsanus tau) is an ideal model to examine the effects of anthropogenic noise on behavior because they rely on acoustic signals for mate attraction and social interactions. We predict that oyster toadfish have acclimated to living in noise-rich environments because they are common in waterways of urban areas, like New York City (NYC). We used passive acoustic monitoring at two locations to see if calling behavior patterns are altered in areas of typically high boat traffic versus low boat traffic (Pier 40, NYC, NY, and Eel Pond, Woods Hole, MA, respectively).
View Article and Find Full Text PDFVocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species.
View Article and Find Full Text PDFIn seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones.
View Article and Find Full Text PDFPrecise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls.
View Article and Find Full Text PDFSerotonin (5-HT) is a modulator of neural circuitry underlying motor patterning, homeostatic control, and social behavior. While previous studies have described 5-HT distribution in various teleosts, serotonergic raphe subgroups in fish are not well defined and therefore remain problematic for cross-species comparisons. Here we used the plainfin midshipman fish, Porichthys notatus, a well-studied model for investigating the neural and hormonal mechanisms of vertebrate vocal-acoustic communication, to redefine raphe subgroups based on both stringent neuroanatomical landmarks as well as quantitative cell measurements.
View Article and Find Full Text PDFDopamine is integral to attentional and motivational processes, but studies are largely restricted to the central nervous system. In mammals [1, 2] and fishes [3, 4], central dopaminergic neurons project to the inner ear and could modulate acoustic signals at the earliest stages of processing. Studies in rodents show dopamine inhibits cochlear afferent neurons and protects against noise-induced acoustic injury [5-10].
View Article and Find Full Text PDFBackground: The development and increasing adoption of advanced microscopy imaging technologies, including high resolution, multi-dimensional digital photography and multiple fluorescence channel acquisition, as well as the availability of inexpensive terabyte-capacity storage, have enabled research laboratories to pursue neurohistological imaging experiments involving multiple neurochemical probes and experimental conditions covering a variety of brain regions. Analyzing and processing the resulting datasets, composed of hundreds of micrographs, presents challenges in ensuring accuracy and reproducibility under demanding time and training constraints.
New Method: The 'Custom Macros' plugin suite for ImageJ automates and systematizes user interaction in neurohistological image analysis tasks, including region selection and thresholding, point/object counts, area measurement, batch filter processing, and data review.
Vocal species use acoustic signals to facilitate diverse behaviors such as mate attraction and territorial defense. However, little is known regarding the neural substrates that interpret such divergent conspecific signals. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.
View Article and Find Full Text PDFWhile the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn.
View Article and Find Full Text PDFLittle is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization.
View Article and Find Full Text PDFThe plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish.
View Article and Find Full Text PDFDopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear.
View Article and Find Full Text PDFThe plainfin midshipman fish (Porichthys notatus) is a well-studied model to understand the neural and endocrine mechanisms underlying vocal-acoustic communication across vertebrates. It is well established that steroid hormones such as estrogen drive seasonal peripheral auditory plasticity in female Porichthys in order to better encode the male's advertisement call. However, little is known of the neural substrates that underlie the motivation and coordinated behavioral response to auditory social signals.
View Article and Find Full Text PDFCatecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males.
View Article and Find Full Text PDFIn seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior.
View Article and Find Full Text PDFSeasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior.
View Article and Find Full Text PDFAlthough the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system.
View Article and Find Full Text PDFWhile the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call.
View Article and Find Full Text PDFPlasticity in growth and reproductive behavior is found in many vertebrate species, but is common in male teleost fish. Typically, "bourgeois" males are considerably larger and defend breeding territories while "parasitic" variants are small and use opportunistic breeding strategies. The P locus mediates this phenotypic variation in Xiphophorus and encodes variant alleles of the melanocortin-4 receptor (MC4R).
View Article and Find Full Text PDFThe major classes of chemicals and brain pathways involved in sexual arousal in mammals are well studied and are thought to be of an ancient, evolutionarily conserved origin. Here we discuss what is known of these neurochemicals and brain circuits in fishes, the oldest and most species-rich group of vertebrates from which tetrapods arose over 350 million years ago. Highlighted are case studies in vocal species where well-delineated sensory and motor pathways underlying reproductive-related behaviors illustrate the diversity and evolution of brain mechanisms driving sexual motivation between (and within) sexes.
View Article and Find Full Text PDFIn the process of characterizing a custom-made affinity-purified antiserum for estrogen receptor beta (ERbeta), ck5912, we used a number of common tests for specificity of ck5912 along with that of 8 commercially available ERbeta antisera: Affinity Bioreagents PA1-310B, Invitrogen D7N, Upstate 06-629, Santa Cruz H150, Y19, L20, 1531, and Abcam 9.88. We tested their recognition of recombinant ERbeta (rERbeta) versus rERalpha, ERbeta versus ERalpha transfected into cell lines, as well as labeling in wildtype (WT) versus estrogen receptor beta knockout (betaERKO) and null (ERbeta(ST)(L-/L-)) mouse ovary, hypothalamus, and hippocampus.
View Article and Find Full Text PDFThe nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats.
View Article and Find Full Text PDFAcross all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus).
View Article and Find Full Text PDFJ Comp Neurol
November 2007
The melanocortin system, which includes alpha-melanocyte-stimulating hormone (alpha-MSH) and its endogenous antagonist, agouti-related protein (AgRP), is fundamental for the central control of energy homeostasis in mammals. Recent studies have demonstrated that many neuropeptides involved in the control of ingestive behavior and energy expenditure, including melanocortins, are also expressed and functional in teleost fishes. To test the hypothesis that the underlying neural pathways involved in energy homeostasis are conserved throughout vertebrate evolution, the neuroanatomical distribution of alpha-MSH in relation to AgRP was mapped in a teleost (zebrafish, Danio rerio) by double-label immunocytochemistry.
View Article and Find Full Text PDF