Publications by authors named "Paul M Dodd"

Throughout the physical sciences, entropy stands out as a pivotal but enigmatic concept that, in materials design, typically takes a backseat to energy. Here, we demonstrate how to precisely engineer entropy to achieve desired colloidal crystals via particle shapes that, importantly, can be made in the laboratory. We demonstrate the inverse design of symmetric hard particles that assemble six different target colloidal crystals due solely to entropy maximization.

View Article and Find Full Text PDF

Low-dimensional objects such as molecular strands, ladders, and sheets have intrinsic features that affect their propensity to fold into 3D objects. Understanding this relationship remains a challenge for de novo design of functional structures. Using molecular dynamics simulations, we investigate the refolding of the 24 possible 2D unfoldings ("nets") of the three simplest Platonic shapes and demonstrate that attributes of a net's topology-net compactness and leaves on the cutting graph-correlate with thermodynamic folding propensity.

View Article and Find Full Text PDF

Since the 1920s, packing arguments have been used to rationalize crystal structures in systems ranging from atomic mixtures to colloidal crystals. Packing arguments have recently been applied to complex nanoparticle structures, where they often, but not always, work. We examine when, if ever, packing is a causal mechanism in hard particle approximations of colloidal crystals.

View Article and Find Full Text PDF

Starting with the early alchemists, a holy grail of science has been to make desired materials by modifying the attributes of basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that making a direct connection between building-block attributes and bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways.

View Article and Find Full Text PDF

Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%.

View Article and Find Full Text PDF

We present an integrated theory and simulation study of polydisperse polymer grafted nanoparticles in a polymer matrix to demonstrate the effect of polydispersity in graft length on the potential of mean force between the grafted nanoparticles. In dense polymer solutions, increasing polydispersity in graft length reduces the strength of repulsion at contact and weakens the attractive well at intermediate interparticle distances, completely eliminating the latter at high polydispersity index. The reduction in contact repulsion is attributable to polydispersity relieving monomer crowding near the particle surface, especially at high grafting densities.

View Article and Find Full Text PDF