Publications by authors named "Paul M A van Haaren"

Introduction: In the Library-of-Plans (LoP) approach, correct plan selection is essential for delivering radiotherapy treatment accurately. However, poor image quality of the cone-beam computed tomography (CBCT) may introduce inter-observer variability and thereby hamper accurate plan selection. In this study, we investigated whether new techniques to improve the CBCT image quality and improve consistency in plan selection, affects the accuracy of LoP selection in cervical cancer patients.

View Article and Find Full Text PDF

Background And Purpose: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT number accuracy. However, correct representation of daily anatomy of the CBCT is also important for sCTs in adaptive radiotherapy.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of marker-based position verification, using daily imaging and an off-line correction protocol, by calculating the delivered dose to prostate, rectum and bladder.

Methods: Prostate cancer patients (n=217) were treated with IMRT, receiving 35 daily fractions. Plans with five beams were optimized taking target coverage (CTV, boost) and organs-at-risk (rectum and bladder) into account.

View Article and Find Full Text PDF

We hypothesized that modulation of the effective charge density of the endothelial surface layer (ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries (diameter approximately 190 microm) were isolated, cannulated, perfused, and superfused with MOPS-buffered physiological salt solutions. MOPS-solutions were of normal ionic strength (162 mM, MOPS), low ionic strength (81 mM, LO-MOPS), or high ionic strength (323 mM, HI-MOPS), to modulate ESL charge density (normal, high, or low ESL charge, respectively).

View Article and Find Full Text PDF

Endothelial cells are covered by a surface layer of membrane-associated proteoglycans, glycosaminoglycans, glycoproteins, glycolipids, and associated plasma proteins. This layer may limit transendothelial solute transport. We determined dimension and transport properties of this endothelial surface layer (ESL) in isolated arteries.

View Article and Find Full Text PDF