Cone-beam computed tomography (CBCT)-based online adaptation is increasingly being introduced into many clinics. Upon implementation of a new treatment technique, a prospective risk analysis is required and enhances workflow safety. We conducted a risk analysis using Failure Mode and Effects Analysis (FMEA) upon the introduction of an online adaptive treatment programme (Wegener et al.
View Article and Find Full Text PDFPurpose: This study analyses a large number of cancer patients with CIEDs for device malfunction and premature battery depletion by device interrogation after each radiotherapy fraction and compares different guidelines in regard to patient safety.
Methods: From 2007 to 2022, a cohort of 255 patients was analyzed for CIED malfunctions via immediate device interrogation after every RT fraction.
Results: Out of 324 series of radiotherapy treatments, with a total number of 5742 CIED interrogations, nine device malfunctions (2.
Background: Objective and subjective assessment of image quality of brain metastases on dual-energy computed tomography (DECT) virtual monoenergetic imaging (VMI) and its impact on target volume delineation.
Materials And Methods: 26 patients with 37 brain metastases receiving Magnetic Resonance Imaging (MRI) and DECT for stereotactic radiotherapy planning were included in this retrospective analysis. Lesion contrast (LC), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were assessed for reconstructed VMI at 63 keV and artificial 120 kV Computed Tomography (CT).
Purpose: The recently introduced Varian Ethos system allows adjusting radiotherapy treatment plans to anatomical changes on a daily basis. The system uses artificial intelligence to speed up the process of creating adapted plans, comes with its own software solutions and requires a substantially different workflow. A detailed analysis of possible risks of the associated workflow is presented.
View Article and Find Full Text PDFThis retrospective, single-institutional study investigated long-term outcome, toxicity and health-related quality of life (HRQoL) in meningioma patients after radiotherapy. We analyzed the data of 119 patients who received radiotherapy at our department from 1997 to 2014 for intracranial WHO grade I-III meningioma. Fractionated stereotactic radiotherapy (FSRT), intensity modulated radiotherapy (IMRT) or radiosurgery radiation was applied.
View Article and Find Full Text PDFPurpose: Dose-escalated external beam radiation therapy (EBRT) and EBRT + high-dose-rate brachytherapy (HDR-BT) boost are guideline-recommended treatment options for localized prostate cancer. The purpose of this study was to compare long-term outcome and toxicity of dose-escalated EBRT versus EBRT + HDR-BT boost.
Methods: From 2002 to 2019, 744 consecutive patients received either EBRT or EBRT + HDR-BT boost, of whom 516 patients were propensity score matched.
Background: Dosimetric and clinical comparison of two cohorts of Iridium-192 (Ir-192) and Cobalt-60 (Co-60) high-dose-rate brachytherapy (DR-BT) boost for localized prostate cancer.
Material And Methods: Patients with localized prostate cancer receiving either Ir-192 or Co-60 high-dose-rate brachytherapy (HDR-BT) boost in combination with external beam radiotherapy (EBRT) in the period of 2002-2019 were evaluated for dosimetric differences, side effects, biochemical relapse-free survival (bRFS), metastasis-free survival (MFS), and overall survival (OS). EBRT, delivered in 46 Gy (D) in conventional fractionation, was followed by two fractions HDR-BT boost with 9 Gy (D) 2 and 4 weeks after EBRT.
Purpose: Evaluation of clinical outcome of two-weekly high-dose-rate brachytherapy boost after external beam radiotherapy (EBRT) for localized prostate cancer.
Methods: 338 patients with localized prostate cancer receiving definitive EBRT followed by a two-weekly high-dose-rate brachytherapy boost (HDR-BT boost) in the period of 2002 to 2019 were analyzed. EBRT, delivered in 46 Gy (D) in conventional fractionation, was followed by two fractions HDR-BT boost with 9 Gy (D) two and four weeks after EBRT.
Background: To increase the image quality of end-expiratory and end-inspiratory phases of retrospective respiratory self-gated 4D MRI data sets using non-rigid image registration for improved target delineation of moving tumors.
Methods: End-expiratory and end-inspiratory phases of volunteer and patient 4D MRI data sets are used as targets for non-rigid image registration of all other phases using two different registration schemes: In the first, all phases are registered directly (dir-Reg) while next neighbors are successively registered until the target is reached in the second (nn-Reg). Resulting data sets are quantitatively compared using diaphragm and tumor sharpness and the coefficient of variation of regions of interest in the lung, liver, and heart.
Previous studies have shown that the dual phosphatidylinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor NVP-BEZ235 radiosensitizes tumor cells if added shortly before ionizing radiation (IR) and kept in culture medium thereafter. The present study explores the impact of inhibitor and IR schedule on the radiosensitizing ability of NVP-BEZ235 in four human glioblastoma cell lines. Two different drug-IR treatment schedules were compared.
View Article and Find Full Text PDF