The oximes pralidoxime (2-PAM), its dimethanesulphonate salt derivative P2S, and obidoxime (toxogonin) are currently licensed and fielded for the treatment of chemical warfare (CW) organophosphorous (OP) nerve agent poisoning. While they are effective against several of the identified threat CW OP agents, they have little efficacy against others such as soman (GD) and cyclosarin (CF). In addition, they are also significantly less effective than other investigational oximes against the nerve agent known as Russian VX (RVX).
View Article and Find Full Text PDFBackground: Human butyrylcholinesterase (huBChE) has been shown to be an effective antidote against multiple LD50 of organophosphorus compounds. A prerequisite for such use of huBChE is a prolonged circulatory half-life. This study was undertaken to produce recombinant huBChE fused to human serum albumin (hSA) and characterize the fusion protein.
View Article and Find Full Text PDFThe traditional therapeutic treatment of organophosphate cholinesterase inhibitor (nerve agents) poisoning consists of co-treatment with an antimuscarinic (atropine) and a reactivator of inhibited acetylcholinesterase (AChE), which contains a nucleophilic oxime function. Two oximes are presently widely available for clinical use, pralidoxime and obidoxime (toxogonin), but both offer little protection against important nerve agent threats. This has highlighted the real need for the development and availability of more effective oximes for human use, a search that has been going on for up to 30 years.
View Article and Find Full Text PDFThis document will address the contributions of defence research to both military and civilian applications. Compared to civilian research capabilities, particularly in terms of personnel, defence research resources are limited. Additionally, many of the research targets are either classified or involve applications that have (or had) limited civilian use.
View Article and Find Full Text PDFAnesthetized pigs were injected i.m. with 500 mg HI-6 dichloride (HI-6 2Cl) (1-[[[4-(aminocarbonyl)-pyridinio]methoxy]methyl]-2[(hydroxyimino)methyl]pyridinium dichloride; CAS 34433-31-3)) or the molar equivalent of HI-6 dimethanesulphonate (HI-6 DMS) 633 mg.
View Article and Find Full Text PDFO-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) is an extremely toxic organophosphate nerve agent that has been weaponized and stockpiled in a number of different countries, and it has been used in recent terrorist events. It differs from other well-known organophosphate nerve agents in that its primary use is as a contact poison rather than as an inhalation hazard. For this reason, we examined the effects of application site and skin decontamination on VX toxicity in anesthetized domestic swine after topical application.
View Article and Find Full Text PDFThe ATP-P2X(7) receptor subtype and a maitotoxin-activated ion channel were studied to determine factors which identify them as separate entities in the control of a cytotolytic pore. Activation of ATP-P2X(7) receptors with 2'-3'-O-(benzylbenzyl) ATP (BzATP) or maitotoxin ion channels resulted in influx of ethidium bromide and cell death. Maitotoxin (25-250 pM)-induced ethidium bromide uptake and cell death was sensitive to extracellular Ca(2+), the ionic composition of the buffer, reduced by the calmodulin inhibitor W7, (N-(s-aminohexyl)-5-chloro-1-naphthalenesulfonamide), (10-100 microM) but unaffected by the ATP-P2X(7) receptor antagonist oxidized ATP, (adenosine 5'-triphosphate periodate oxidized sodium salt) (oATP).
View Article and Find Full Text PDFThe site specificity of the percutaneous absorption of methyl salicylate (MeS) and the organophosphate nerve agent VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate) was examined in anaesthetized domestic swine that were fully instrumented for physiological endpoints. Four different anatomical sites (ear, perineum, inguinal crease and epigastrium) were exposed to the MeS and the serum levels were measured over a 6-h time period. The dose absorbed at the ear region was 11 microg cm(-2) with an initial flux of 0.
View Article and Find Full Text PDF1. ATP receptors of the P2X class have previously been identified on autonomic nerve endings and on a limited population of CNS neurons. 2.
View Article and Find Full Text PDF