Grit chambers are meant to reduce the impact of inorganic particles on equipment and processes downstream. Despite their important role, characterization and modelling studies of these process units are scarce, leading to a lack of knowledge and suboptimal operation. Thus, this study presents the first dynamic model, based on mass balances and particle settling velocity distributions, for use in a water resource recovery facility (WRRF) simulator for design and optimization of grit removal units.
View Article and Find Full Text PDFGrit chambers are installed at the headworks of a water resource recovery facility (WRRF) to reduce the impact of grit particles to the equipment and processes downstream. This settling process should thus be designed and operated in an efficient way. Despite the importance of knowing settling characteristics for design and operation of grit chambers, previous grit definitions have been based only on particle size characteristics, and not on settling velocities.
View Article and Find Full Text PDFA full-scale biofilm-enhanced aerated lagoon using fixed submerged media was monitored using automated water quality monitoring stations over the span of one year to quantify its nitrification performance. The system was operating at a high organic loading rate averaging 5.8 g total CBOD /m of media per day (23.
View Article and Find Full Text PDFResearch on the development of a passive phosphorus entrapment process characterized by biofilters with active wood-based media impregnated with iron hydroxide has been conducted. Phosphorus removal was done by sorption which includes adsorption, exchange of ions and precipitation. Experiments were performed in order to investigate the effect of nitrate, generally present at the end of secondary treatment, on the phosphorus removal performance.
View Article and Find Full Text PDFWater Sci Technol
February 2018
An experimental study dedicated to the characterization of the settleability of solids produced in immersed fixed media biofilm reactors has been carried out. The influence of operating temperature (0.1 to 16 °C) and surface organic loading rate (OLR) (0.
View Article and Find Full Text PDFThis work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10-12 °C, and surface loading rates of 1-2 g filtered COD/m d and 0.4-0.
View Article and Find Full Text PDFCharacterization and modelling of primary settlers have been neglected pretty much to date. However, whole plant and resource recovery modelling requires primary settler model development, as current models lack detail in describing the dynamics and the diversity of the removal process for different particulate fractions. This paper focuses on the improved modelling and experimental characterization of primary settlers.
View Article and Find Full Text PDFThe headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009.
View Article and Find Full Text PDFWith Zipf's law being originally and most famously observed for word frequency, it is surprisingly limited in its applicability to human language, holding over no more than three to four orders of magnitude before hitting a clear break in scaling. Here, building on the simple observation that phrases of one or more words comprise the most coherent units of meaning in language, we show empirically that Zipf's law for phrases extends over as many as nine orders of rank magnitude. In doing so, we develop a principled and scalable statistical mechanical method of random text partitioning, which opens up a rich frontier of rigorous text analysis via a rank ordering of mixed length phrases.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2014
A wastewater biofiltration model is used to assess its capacity to reproduce the treatment behaviour of a plant-sized tertiary nitrifying biofilter unit. It is calibrated on two different types of datasets collected at the Seine-Aval biofiltration plant (Achères, France): grab samples at several heights inside the media bed and a long-term daily plant monitoring over a 1-year period. The model parameters are first calibrated to fit the dynamics observed in the media bed, after which the model is compared to the second dataset.
View Article and Find Full Text PDFTo obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained.
View Article and Find Full Text PDFNitrous oxide (N2O) is a major greenhouse gas, heavily contributing to global warming. N2O is emitted from various sources such as wastewater treatment plants, during the nitrification and denitrification steps. ASM models, which are commonly used in wastewater treatment, usually consider denitrification as a one-step process (NO3- directly reduced to N2) and are as such unable to provide values for intermediate products of the reaction like N2O.
View Article and Find Full Text PDFThe vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter.
View Article and Find Full Text PDFThe main objective of this work concerns the evaluation of the biological aerated filtration model found in GPS-X, which had never been evaluated with adequate data. This model is interesting since it integrates the physical and biological phenomena involved during filtration with a low complexity of use. The validation of the model parameters combines experimental and theoretical approaches.
View Article and Find Full Text PDFModel results are only as good as the data fed as input or used for calibration. Data reconciliation for wastewater treatment modeling is a demanding task, and standardized approaches are lacking. This paper suggests a procedure to obtain high-quality data sets for model-based studies.
View Article and Find Full Text PDFAerated organic biofilters treating pig manure exhibit partial nitrogen removal. In order to optimize this process, a better comprehension of its colonization by denitrifiers was needed. Three pilot aerated biofilters, fed with variable Biological Oxygen Demand after five days: Total Kjeldahl Nitrogen (BOD(5):TKN) ratios, were constructed and monitored during 180 days.
View Article and Find Full Text PDFThis paper presents a methodology for assessing the variability of biodegradable chemical oxygen demand (COD) fractions in urban wastewaters. Thirteen raw wastewater samples from combined and separate sewers feeding the same plant were characterised, and two optimisation procedures were applied in order to evaluate the variability in biodegradable fractions and related kinetic parameters. Through an overall optimisation on all the samples, a unique kinetic parameter set was obtained with a three-substrate model including an adsorption stage.
View Article and Find Full Text PDF